Reconstructing Metabolic Pathways by Bidirectional Chemical Search

  • Liliana Félix
  • Francesc Rosselló
  • Gabriel Valiente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4695)

Abstract

One of the main challenges in systems biology is the establishment of the metabolome: a catalogue of the metabolites and biochemical reactions present in a specific organism. Current knowledge of biochemical pathways as stored in public databases such as KEGG, is based on carefully curated genomic evidence for the presence of specific metabolites and enzymes that activate particular biochemical reactions. In this paper, we present an efficient method to build a substantial portion of the artificial chemistry defined by the metabolites and biochemical reactions in a given metabolic pathway, which is based on bidirectional chemical search. Computational results on the pathways stored in KEGG reveal novel biochemical pathways.

Keywords

Artificial chemistry biochemical reaction metabolic pathway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deville, Y., Gilbert, D., van Helden, J., Wodak, S.J.: An overview of data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4, 246–259 (2003)CrossRefGoogle Scholar
  2. 2.
    Karp, P.D., Mavrovouniotis, M.L.: Representing, analyzing, and synthesizing biochemical pathways. IEEE Expert 9, 11–21 (1994)CrossRefGoogle Scholar
  3. 3.
    Michal, G.: Biological Pathways: An Atlas of Biochemistry and Molecular Biology. John Wiley & Sons, New York (1999)Google Scholar
  4. 4.
    Lemer, C., Antezana, E., Couche, F., Fays, F., Santolaria, X., Janky, R., Deville, Y., Richelle, J., Wodak, S.J.: The aMAZE LightBench: A web interface to a relational database of cellular processes. Nucleic Acids Research 32, 443–448 (2004)CrossRefGoogle Scholar
  5. 5.
    Schomburg, I., Chang, A., Schomburg, D.: BRENDA, enzyme data and metabolic information. Nucleic Acids Research 30, 47–49 (2002)CrossRefGoogle Scholar
  6. 6.
    Caspi, R., Foerster, H., Fulcher, C.A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J., Rhee, S.Y., Tissier, C., Zhang, P., Karp, P.D.: MetaCyc: A multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34, 511–516 (2006)CrossRefGoogle Scholar
  7. 7.
    Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27–30 (2000)CrossRefGoogle Scholar
  8. 8.
    Overbeek, R., Larsen, N., Pusch, G.D., D’Souza, M., Selkov, E., Kyrpides, N., Fonstein, M., Maltsev, N., Selkov, E.: WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Research 28, 123–125 (2000)CrossRefGoogle Scholar
  9. 9.
    Edwards, J.S., Palsson, B.O.: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natural Academy of Science, USA 97, 5528–5533 (2000)CrossRefGoogle Scholar
  10. 10.
    Dittrich, P., Ziegler, J., Banzhaff, W.: Artificial chemistries—a review. Artif. Life 7, 225–275 (2001)CrossRefGoogle Scholar
  11. 11.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)CrossRefGoogle Scholar
  12. 12.
    Benkö, G., Flamm, C., Stadler, P.F.: Generic properties of chemical networks: Artificial chemistry based on graph rewriting. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 10–19. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Benkö, G., Flamm, C., Stadler, P.F.: Multi-phase artificial chemistry. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 16–22. IOS Press, Amsterdam (2004)Google Scholar
  14. 14.
    McCaskill, J., Niemann, U.: Graph replacement chemistry for DNA processing. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 103–116. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical graph transformation. Electr. Notes Theoret. Comput. Sci. 127, 157–166 (2005)CrossRefGoogle Scholar
  16. 16.
    Rosselló, F., Valiente, G.: Graph transformation in molecular biology. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 116–133. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Temkin, O.N., Zeigarnik, A.V., Bonchev, D.: Chemical Reaction Networks: A Graph-theoretical Approach. CRC Press, Boca Raton, USA (1996)Google Scholar
  18. 18.
    Rosselló, F., Valiente, G.: Analysis of metabolic pathways by graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 70–82. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Tubert-Brohman, I.: Perl and chemistry. The Perl Journal 8, 3–5 (2004), http://www.perlmol.org/ Google Scholar
  20. 20.
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)CrossRefGoogle Scholar
  21. 21.
    Ma, H., Zeng, A.-P.: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 2, 270–277 (2003)CrossRefGoogle Scholar
  22. 22.
    Brooksbank, C., Cameron, G., Thornton, J.: The European Bioinformatics Institute’s data resources: Towards systems biology. Nucleic Acids Res. 33, D46–D53 (2005)CrossRefGoogle Scholar
  23. 23.
    Wagner, A.B.: Scifinder scholar 2006: An empirical analysis of research topic query processing. J. Chem. Inf. Model. 46, 767–774 (2006)CrossRefGoogle Scholar
  24. 24.
    Bartley, G.E., Scolnik, P.A., Beyer, P.: Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and ζ-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur. J. Biochem. 259, 396–403 (1999)CrossRefGoogle Scholar
  25. 25.
    Scolnik, P.A., Bartley, G.E.: Nucleotide sequence of Zeta-carotene Desaturase (accession no. U38550) from Arabidopsis. Plant Physiol. 109, 1499 (1995)Google Scholar
  26. 26.
    Estévez, J.M., Cantero, A., Reindl, A., Reichler, S., León, P.: 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276, 22901–22909 (2001)CrossRefGoogle Scholar
  27. 27.
    Seo, M., Koshiba, T.: Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41–48 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Liliana Félix
    • 1
  • Francesc Rosselló
    • 2
  • Gabriel Valiente
    • 1
  1. 1.Algorithms, Bioinformatics, Complexity and Formal Methods Research Group, Technical University of Catalonia, E-08034 BarcelonaSpain
  2. 2.Department of Mathematics and Computer Science, University of the Balearic Islands, E-07122 Palma de Mallorca 

Personalised recommendations