New Applications of the Verdict Library for Standardized Mesh Verification Pre, Post, and End-to-End Processing

  • Philippe P. Pébay
  • David Thompson
  • Jason Shepherd
  • Patrick Knupp
  • Curtis Lisle
  • Vincent A. Magnotta
  • Nicole M. Grosland


verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of functions. A quality is a real number assigned to one of these shapes depending on its particular vertex coordinates. These functions are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. This article describes the most recent version of verdict and provides a summary of the main properties of the quality functions offered by the library. It finally demonstrates the versatility and applicability of verdict by illustrating its use in several scientific applications that pertain to pre, post, and end-to-end processing.


Quality Function Mesh Generation Sandia National Laboratory Tetrahedral Mesh Mesh Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BioFEM: Bioelectric field finite element method software. Scientific Computing and Imaging Institute (SCI). URL html.Google Scholar
  2. 2.
    BioImage: Volumetric image analysis and visualization. Scientific Computing and Imaging Institute (SCI). URL html.Google Scholar
  3. 3.
    BioPSE: Bioelectric problem solving environment for modeling, simulation, image processing, and visualization of bioelectric fields. Scientific Computing and Imaging Institute (SCI). URL Scholar
  4. 4.
    BioTensor: A SCIRun Power App for processing and visualizing diffusion tensor images. Scientific Computing and Imaging Institute (SCI). URL www.sci.utah. edu/cibc/software/index.html.Google Scholar
  5. 5.
    FusionView: Problem solving environment for MHD visualization. Scientific Computing and Imaging Institute (SCI). URL fusion.html.Google Scholar
  6. 6.
    Seg3D: Volumetric image segmentation and visualization. Scientific Computing and Imaging Institute (SCI). URL html.Google Scholar
  7. 7.
    Ted D. Blacker. Paving: A new approach to automated quadrilateral mesh generation. Intl. J. for Numerical Methods in Engineering, 32:811–847, 1991.zbMATHCrossRefGoogle Scholar
  8. 8.
    Michael Brewer, Lori Freitag-Diachin, Patrick Knupp, Thomas Leurent, and Darryl J. Melander. The MESQUITE mesh quality improvement toolkit. In Proc. 12th Intl. Meshing Roundtable, pages 239–250. Sandia National Laboratories, September 2003.Google Scholar
  9. 9.
    W. A. Cook and W. R. Oakes. Mapping methods for generating threedimensional meshes. Computers In Mechanical Engineering, CIME Research Supplement:67–72, August 1982.Google Scholar
  10. 10.
    MSC Software Corporation. Finite Element Modeling, volume 3 of MSC.PATRAN Reference Manual. MSC.Software, Los Angeles, CA, 2003.Google Scholar
  11. 11.
    The CUBIT geometry and mesh generation toolkit, Sandia National Laboratories. URL Scholar
  12. 12.
    V. N. Parthasarathy et al. A comparison of tetrahedron quality measures. Finite Elem. Anal. Des., 15:255–261, 1993.CrossRefGoogle Scholar
  13. 13.
    Inc. Fluent. Fluent FIMESH User’s Manual. Fluent, Inc.Google Scholar
  14. 14.
    P.J. Frey and P.-L. George. Mesh Generation. Hermes Science Publishing, Oxford&Paris, 2000.zbMATHGoogle Scholar
  15. 15.
    P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Intl. J. Numer. Meth. Engng., 48:1165–1185, 2000.zbMATHCrossRefGoogle Scholar
  16. 16.
    P. Knupp. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design, 39:217–241, 2003.zbMATHCrossRefGoogle Scholar
  17. 17.
    Patrick Knupp. Next-generation sweep tool: A method for generating all-hex meshes on two-and-one-half dimensional geometries. In Proc. 7th Intl. Meshing Roundtable, pages 505–513. Sandia National Laboratories, October 1998.Google Scholar
  18. 18.
    Patrick Knupp and Scott A. Mitchell. Integration of mesh optimization with 3D all-hex mesh generation, LDRD subcase 3504340000, final report. SAND 99-2852, October 1999.Google Scholar
  19. 19.
    Patrick M. Knupp. Winslow smoothing on two-dimensional unstructured meshes. In Proc. 7th Intl. Meshing Roundtable, pages 449–457. Sandia National Laboratories, 1998.Google Scholar
  20. 20.
    Patrick M. Knupp. Hexahedral and tetrahedral mesh shape optimization. Intl. J. for Numerical Methods in Engineering, 58(1):319–332, 2003.zbMATHMathSciNetGoogle Scholar
  21. 21.
    Patrick M. Knupp. Hexahedral mesh untangling and algebraic mesh quality metrics. In Proc. 9th Intl. Meshing Roundtable, pages 173–183. Sandia National Laboratories, October 2000.Google Scholar
  22. 22.
    Yuri Kuznetsov, Konstantin Lipnikov, and Mikhail Shashkov. Mimetic finite difference method on polygonal meshes. Technical Report LA-UR-03-7608, Los Alamos National Laboratories, 2003.Google Scholar
  23. 23.
    Mingwu Lai, Steven E. Benzley, Gregory D. Sjaardema, and Timothy J. Tautges. A multiple source and target sweeping method for generating all-hexahedral finite element meshes. In Proc. 5th Intl. Meshing Roundtable, pages 217–228. Sandia National Laboratories, October 1996.Google Scholar
  24. 24.
    Mingwu Lai, Steven E. Benzley, and David R. White. Automated hexahedral mesh generation by generalized multiple source to multiple target sweeping. Intl. J. for Numerical Methods in Engineering, 49(1):261–275, September 2000.zbMATHCrossRefGoogle Scholar
  25. 25.
    Mark Loriot. TetMesh-GHS3D v3.1 the fast, reliable, high quality tetrahedral mesh generator and optimiser. URL pdf.Google Scholar
  26. 26.
    Scott A. Mitchell. Choosing corners of rectangles for mapped meshing. In 13th Annual Symposium on Computational Geometry, pages 87–93. ACM Press, June 1997.Google Scholar
  27. 27.
    Scott A. Mitchell. High fidelity interval assignment. In Proc. 6th Intl. Meshing Roundtable, pages 33–44. Sandia National Laboratories, October 1997.Google Scholar
  28. 28.
    A. Oddy, J. Goldak, M. McDill, and M. Bibby. A distortion metric for isoparametric finite elements. Trans. CSME, 38-CSME-32, 1988. Accession No. 2161.Google Scholar
  29. 29.
    P. P. Pébay. Planar quadrangle quality measures. Engineering with Computers, 20(2):157–173, 2004. URL Scholar
  30. 30.
    P. P. Pébay and T. J. Baker. Analysis of triangle quality measures. AMS Mathematics of Computation, 72(244):1817–1839, 2003. URL 1090/S0025-5718-03-01485-6.zbMATHCrossRefGoogle Scholar
  31. 31.
    Combustion research group of University of Utah. C-Safe - Center for the Simulation of Accidental Fires and Explosions. URL Scholar
  32. 32.
    J. Robinson. CRE method of element testing and the Jacobian shape parameters. Eng. Comput., 4, 1987.Google Scholar
  33. 33.
    Larry A. Schoof and Victor R. Yarberry. EXODUS II: A finite element data model. Technical Report SAND92-2137, Sandia National Laboratories, 1992.Google Scholar
  34. 34.
    Scirun: A Scientific computing problem solving environment. Scientific Computing and Imaging Institute (SCI). URL, 2007..Google Scholar
  35. 35.
    Michael A. Scott, Matthew N. Earp, Steven E. Benzley, and Michael B. Stephenson. Adaptive sweeping techniques. In Proc. 14th Intl. Meshing Roundtable, pages 417–432. Sandia National Laboratories, September 2005.Google Scholar
  36. 36.
    SDRC. SDRC/IDEAS Simulation: Finite Element Modeling – User’s Guide. SDRC.Google Scholar
  37. 37.
    Jason F. Shepherd, Scott A. Mitchell, Patrick Knupp, and David R. White. Methods for multisweep automation. In Proc. 9th Intl. Meshing Roundtable, pages 77–87. Sandia National Laboratories, October 2000.Google Scholar
  38. 38.
    K.H. Shivanna, B.D. Adams, V.A. Magnotta, and N.M. Grosland. Towards automating patient-specific finite element model development. In K. Miller and D. Poulikakos, editors, Computational Biomechanics For Medicine 2006, pages 85–93. Medical Image Computing and Computer Assisted Intervention Conference, 2006.Google Scholar
  39. 39.
    C. Simpson, C. D. Ernst, P. Knupp, P. P. P´ebay, and D. C. Thompson. The Verdict Library Reference Manual. Sandia National Laboratories, April 2007. URL Scholar
  40. 40.
    L. M. Taylor and D. P. Flanagan. Pronto3D - a three dimensional transient solid dynamics program. Technical Report SAND87-1912, Sandia National Laboratories, 1989.Google Scholar
  41. 41.
    David R. White. Automatic Quadrilateral and Hexahedral Meshing of Pseudo-Cartesian Geometries Using Virtual Subdivision. Published Master’s Thesis, Brigham Young University, June 1996.Google Scholar
  42. 42.
    David R. White, Mingwu Lai, Steven E. Benzley, and Gregory D. Sjaardema. Automated hexahedral mesh generation by virtual decomposition. In Proc. 4th Intl. Meshing Roundtable, pages 165–176. Sandia National Laboratories, October 1995.Google Scholar
  43. 43.
    David R. White and Timothy J. Tautges. Automatic scheme selection for toolkit hex meshing. Intl. J. for Numerical Methods in Engineering, 49(1):127–144, September 2000.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philippe P. Pébay
    • 1
  • David Thompson
    • 1
  • Jason Shepherd
    • 2
  • Patrick Knupp
    • 2
  • Curtis Lisle
    • 3
  • Vincent A. Magnotta
    • 4
  • Nicole M. Grosland
    • 4
  1. 1.Sandia National LaboratoriesLivermoreU.S.A.
  2. 2.Sandia National LaboratoriesAlbuquerqueU.S.A.
  3. 3.Knowledgevis, LlcMaitlandU.S.A.
  4. 4.The University of IowaIowaU.S.A.

Personalised recommendations