Semantic Matching: Algorithms and Implementation

  • Fausto Giunchiglia
  • Mikalai Yatskevich
  • Pavel Shvaiko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4601)

Abstract

We view match as an operator that takes two graph-like structures (e.g., classifications, XML schemas) and produces a mapping between the nodes of these graphs that correspond semantically to each other. Semantic matching is based on two ideas: (i) we discover mappings by computing semantic relations (e.g., equivalence, more general); (ii) we determine semantic relations by analyzing the meaning (concepts, not labels) which is codified in the elements and the structures of schemas. In this paper we present basic and optimized algorithms for semantic matching, and we discuss their implementation within the S-Match system. We evaluate S-Match against three state of the art matching systems, thereby justifying empirically the strength of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atzeni, P., Cappellari, P., Bernstein, P.: Model-independent schema and data translation. In: Proceedings of EDBT, pp. 368–385 (2006)Google Scholar
  2. 2.
    Atzeni, P., Cappellari, P., Bernstein, P.: Modelgen: model independent schema translation. In: Proceedings of ICDE, pp. 1111–1112 (2005)Google Scholar
  3. 3.
    Avesani, P., Giunchiglia, F., Yatskevich, M.: A large scale taxonomy mapping evaluation. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 67–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2002)Google Scholar
  5. 5.
    Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and structured data sources. SIGMOD Record, pp. 54–59 (1999)Google Scholar
  6. 6.
    Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach and an application. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 130–145. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Bernstein, P., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema matching. SIGMOD Record 33(4), 38–43 (2004)CrossRefGoogle Scholar
  8. 8.
    Davis, M., Longemann, G., Loveland, D.: A machine program for theorem proving. Journal of the ACM 5(7) (1962)Google Scholar
  9. 9.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering complex semantic matches between database schemas. In: Proceedings of SIGMOD, pp. 383–394 (2004)Google Scholar
  11. 11.
    Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 610–621. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Doan, A., Halevy, A.: Semantic integration research in the database community: A brief survey. AI Magazine, Special Issue on Semantic Integration (2005)Google Scholar
  13. 13.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proceedings of ECAI, pp. 333–337 (2004)Google Scholar
  14. 14.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (to appear)Google Scholar
  15. 15.
    Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and evaluating automatic semantic reconciliation. The VLDB Journal 14(1), 50–67 (2005)CrossRefGoogle Scholar
  16. 16.
    Haas, L.M., Hernandez, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from research prototype to industrial tool. In: Proceedings of SIGMOD, pp. 805–810 (2005)Google Scholar
  17. 17.
    Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on “I Linguaggi e le Macchine” XVI, 345–364 (1993)Google Scholar
  18. 18.
    Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding Classifications into Lightweight Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 80–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-clausal formulas. In: Proceedings of AI*IA, pp. 84–94 (1999)Google Scholar
  20. 20.
    Giunchiglia, F., Shvaiko, P.: Semantic matching. The Knowledge Engineering Review Journal 18(3), 265–280 (2003)CrossRefGoogle Scholar
  21. 21.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an implementation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Discovering Missing Background Knowledge in Ontology Matching. In: Proceedings of ECAI, pp. 382–386 (2006)Google Scholar
  23. 23.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic schema matching. In: Proceedings of CoopIS, pp. 347–365 (2005)Google Scholar
  24. 24.
    Giunchiglia, F., Yatskevich, M.: Element level semantic matching. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient semantic matching. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 272–289. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Guarino, N.: The role of ontologies for the Semantic Web (and beyond). Technical report, Laboratory for Applied Ontology, ISTC-CNR (2004)Google Scholar
  27. 27.
    Haarslev, V., Moller, R., Wessel, M.: RACER: Semantic middleware for industrial projects based on RDF/OWL, http://www.sts.tu-harburg.de/~r.f.moeller/racer/
  28. 28.
    He, B., Chang, K.C.-C.: Automatic Complex Schema Matching across Web Query Interfaces: A Correlation Mining Approach. ACM Transactions on Database Systems 31(1), 346–395 (2006)CrossRefGoogle Scholar
  29. 29.
    Ide, N., Veronis, J.: Word Sense Disambiguation: the state of the art. Computational linguistics 24(1), 1–40 (1998)Google Scholar
  30. 30.
    Kang, J., Naughton, J.F.: On schema matching with opaque column names and data values. In: Proceedings of SIGMOD, pp. 205–216 (2003)Google Scholar
  31. 31.
    Le Berre, D.: SAT4J: A satisfiability library for Java, http://www.sat4j.org/
  32. 32.
    Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proceedings of VLDB, pp. 49–58 (2001)Google Scholar
  33. 33.
    Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-based schema matching. In: Proceedings of ICDE, pp. 57–68 (2005)Google Scholar
  34. 34.
    Magnini, B., Serafini, L., Speranza, M.: Making explicit the semantics hidden in schema models. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003)Google Scholar
  35. 35.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A versatile graph matching algorithm. In: Proceedings of ICDE, pp. 117–128 (2002)Google Scholar
  36. 36.
    Melnik, S., Rahm, E., Bernstein, P.: Rondo: A programming platform for generic model management. In: Proceedings of SIGMOD, pp. 193–204 (2003)Google Scholar
  37. 37.
    Miller, A.G.: WordNet: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  38. 38.
    Pan, J.Z.: Description Logics: reasoning support for the Semantic Web. PhD thesis, School of Computer Science, The University of Manchester (2004)Google Scholar
  39. 39.
    Modica, G.A., Gal, A., Jamil, H.M.: The use of machine-generated ontologies in dynamic information seeking. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 433–448. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  40. 40.
    Noy, N.: Semantic Integration: A survey of ontology-based approaches. SIGMOD Record 33(4), 65–70 (2004)CrossRefGoogle Scholar
  41. 41.
    Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation (2), 293–304 (1986)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)MATHCrossRefGoogle Scholar
  43. 43.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data Semantics IV, 146–171 (2005)CrossRefGoogle Scholar
  44. 44.
    Stoilos, G., Stamou, G.B., Kollias, S.D.: A String Metric for Ontology Alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  45. 45.
    Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide. Technical report, World Wide Web Consortium (W3C) (February 10, 2004), http://www.w3.org/TR/2004/REC-owl-guide-20040210/
  46. 46.
    Su, W., Wang, J., Lochovsky, F.: Holistic Schema Matching for Web Query Interface. In: Proceedings of EDBT, pp. 77–94 (2006)Google Scholar
  47. 47.
    Tsetin, G.: On the complexity proofs in propositional logics. Seminars in Mathematics 8 (1970)Google Scholar
  48. 48.
    Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under schema changes. The VLDB Journal 13(3), 274–293 (2004)CrossRefGoogle Scholar
  49. 49.
    Ziegler, P., Kiefer, C., Sturm, C., Dittrich, K., Bernstein, A.: Detecting Similarities in Ontologies with the SOQA-SimPack Toolkit. In: Proceedings of EDBT, pp. 59–76 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fausto Giunchiglia
    • 1
  • Mikalai Yatskevich
    • 1
  • Pavel Shvaiko
    • 1
  1. 1.Department of Information and Communication Technology, University of Trento, 38050, Povo, TrentoItaly

Personalised recommendations