Tag Recommendations in Folksonomies

  • Robert Jäschke
  • Leandro Marinho
  • Andreas Hotho
  • Lars Schmidt-Thieme
  • Gerd Stumme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4702)

Abstract

Collaborative tagging systems allow users to assign keywords—so called “tags”—to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied.

In this paper we evaluate and compare two recommendation algorithms on large-scale real life datasets: an adaptation of user-based collaborative filtering and a graph-based recommender built on top of FolkRank. We show that both provide better results than non-personalized baseline methods. Especially the graph-based recommender outperforms existing methods considerably.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batagelj, V., Zaversnik, M.: Generalized cores, cs.DS/0202039 (2002), http://arxiv.org/abs/cs/0202039
  2. 2.
    Benz, D., Tso, K., Schmidt-Thieme, L.: Automatic bookmark classification: A collaborative approach. In: IWI 2006. Proceedings of the Second Workshop on Innovations in Web Infrastructure, Edinburgh, Scotland (2006)Google Scholar
  3. 3.
    Cattuto, C., Loreto, V., Pietronero, L.: Collaborative tagging and semiotic dynamics (May 2006), http://arxiv.org/abs/cs/0605015
  4. 4.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)CrossRefGoogle Scholar
  5. 5.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: Proc. of the 15th International WWW Conference, Edinburgh, Scotland (2006)Google Scholar
  6. 6.
    Halpin, H., Robu, V., Shepard, H.: The dynamics and semantics of collaborative tagging. In: SAAW 2006. Proceedings of the 1st Semantic Authoring and Annotation Workshop (2006)Google Scholar
  7. 7.
    Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A General Review. D-Lib Magazine 11(4) (2005)Google Scholar
  8. 8.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  9. 9.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lund, B., Hammond, T., Flack, M., Hannay, T.: Social Bookmarking Tools (II): A Case Study - Connotea. D-Lib Magazine 11(4) (2005)Google Scholar
  12. 12.
    Mathes, A.: Folksonomies – Cooperative Classification and Communication Through Shared Metadata (December 2004), http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
  13. 13.
    Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mishne, G.: Autotag: a collaborative approach to automated tag assignment for weblog posts. In: WWW 2006. Proceedings of the 15th international conference on World Wide Web, pp. 953–954. ACM Press, New York (2006)CrossRefGoogle Scholar
  15. 15.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: World Wide Web, pp. 285–295 (2001)Google Scholar
  16. 16.
    Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining association rules in folksonomies. In: Batagelj, V., Bock, H.-H., Ferligoj, A., Žiberna, A. (eds.) Data Science and Classification. Proc. of the 10th IFCS Conf. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 261–270. Springer, Berlin, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert Jäschke
    • 1
    • 2
  • Leandro Marinho
    • 3
    • 4
  • Andreas Hotho
    • 1
  • Lars Schmidt-Thieme
    • 3
  • Gerd Stumme
    • 1
    • 2
  1. 1.Knowledge & Data Engineering Group (KDE), University of Kassel, Wilhelmshöher Allee 73, 34121 KasselGermany
  2. 2.Research Center L3S,Appelstr. 9a, 30167 HannoverGermany
  3. 3.Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Samelsonplatz 1, 31141 HildesheimGermany
  4. 4.Brazilian National Council Scientific and Technological Research (CNPq) scholarship holder 

Personalised recommendations