Hybrid Multi Agent-Neural Network Intrusion Detection with Mobile Visualization

  • Álvaro Herrero
  • Emilio Corchado
  • María A. Pellicer
  • Ajith Abraham
Part of the Advances in Soft Computing book series (AINSC, volume 44)


A multiagent system that incorporates an Artificial Neural Networks based Intrusion Detection System (IDS) has been defined to guaranty an efficient computer network security architecture. The proposed system facilitates the intrusion detection in dynamic networks. This paper presents the structure of the Mobile Visualization Connectionist Agent-Based IDS, more flexible and adaptable. The proposed improvement of the system in this paper includes deliberative agents that use the artificial neural network to identify intrusions in computer networks. The agent based system has been probed through anomalous situations related to the Simple Network Management Protocol.


Multiagent Systems Artificial Neural Networks Unsupervised Learning Projection Methods Computer Network Security Intrusion Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spafford, E.H., Zamboni, D.: Intrusion Detection Using Autonomous Agents. Computer Networks: The Int. Journal of Computer and Telecommunications Networking 34(4), 547–570 (2000)Google Scholar
  2. 2.
    Hegazy, I.M., Al-Arif, T., Fayed, Z.T., Faheem, H.M.: A Multi-agent Based System for Intrusion Detection. IEEE Potentials 22(4), 28–31 (2003)CrossRefGoogle Scholar
  3. 3.
    Dasgupta, D., Gonzalez, F., Yallapu, K., Gomez, J., Yarramsettii, R.: CIDS: An agentbased intrusion detection system. Computers & Security 24(5), 387–398 (2005)CrossRefGoogle Scholar
  4. 4.
    Wang, H.Q., Wang, Z.Q., Zhao, Q., Wang, G.F., Zheng, R.J., Liu, D.X.: Mobile Agents for Network Intrusion Resistance. In: APWeb 2006. LNCS, vol. 3842, pp. 965–970. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Deeter, K., Singh, K., Wilson, S., Filipozzi, L., Vuong, S.: APHIDS: A Mobile Agent-Based Programmable Hybrid Intrusion Detection System. In: Mobility Aware Technologies and Applications. LNCS, vol. 3284, pp. 244–253. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Laskov, P., Dussel, P., Schafer, C., Rieck, K.: Learning Intrusion Detection: Supervised or Unsupervised? In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Liao, Y.H., Vemuri, V.R.: Use of K-Nearest Neighbor Classifier for Intrusion Detection. Computers & Security 21(5), 439–448 (2002)CrossRefGoogle Scholar
  8. 8.
    Sarasamma, S.T., Zhu, Q.M.A., Huff, J.: Hierarchical Kohonenen Net for Anomaly Detection in Network Security. IEEE Transactions on Systems Man and Cybernetics 35(2), 302–312 (2005)CrossRefGoogle Scholar
  9. 9.
    Zanero, S., Savaresi, S.: Unsupervised Learning Techniques for an Intrusion Detection System. In: Proc. of the ACM Symposium on Applied Computing. pp. 412–419 (2004)Google Scholar
  10. 10.
    Corchado, E., Herrero, A., Sáiz, J.M.: Detecting Compounded Anomalous SNMP Situations Using Cooperative Unsupervised Pattern Recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrozny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 905–910. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Sindhu, S.S.S., Ramasubramanian, P., Kannan, A.: Intelligent Multi-agent Based Genetic Fuzzy Ensemble Network Intrusion Detection. In: Neural Information Processing. LNCS, pp. 983–988. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Middlemiss, M., Dick, G.: Feature Selection of Intrusion Detection Data Using a Hybrid Genetic Algorithm/KNN Approach. In: Design and application of hybrid intelligent systems. IOS Press. 519–527 (2003)Google Scholar
  13. 13.
    Kholfi, S., Habib, M., Aljahdali, S.: Best Hybrid Classifiers for Intrusion Detection. Journal of Computational Methods in Science and Engineering 6(2), 299–307 (2006)Google Scholar
  14. 14.
    Carrascosa, C., Bajo, J., Julián, V., Corchado, J.M., Botti, V.: Hybrid Multi-agent Architecture as a Real-Time Problem-Solving Model. Expert Systems with Applications: An International Journal 34(1), 2–17 (2008)CrossRefGoogle Scholar
  15. 15.
    Corchado, E., Herrero, A., Saiz, J.M.: Testing CAB-IDS through Mutations: on the Identification of Network Scans. In: Proc. of the Int. Conf. on Knowledge-Based and Intelligent Information & Engineering Systems. LNAI, vol. 4252, pp. 433–441 (2006)CrossRefGoogle Scholar
  16. 16.
    Herrero, A., Corchado, E., Sáiz, J.M.: MOVICAB-IDS: Visual Analysis of Network Traffic Data Streams for Intrusion Detection. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1424–1433. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Corchado, J.M., Laza, R.: Constructing Deliberative Agents with Case-Based Reasoning Technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  18. 18.
    Pellicer, M.A., Corchado, J.M.: Development of CBR-BDI Agents. International Journal of Computer Science and Applications 2(1), 25–32 (2005)Google Scholar
  19. 19.
    Aamodt, A., Plaza, E.: Case-Based Reasoning-Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  20. 20.
    Bratman, M.E.: Intentions, Plans and Practical Reason. Harvard University Press, Cambridge, M.A. (1987)Google Scholar
  21. 21.
    Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: the Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370 (2003)CrossRefGoogle Scholar
  22. 22.
    Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)CrossRefGoogle Scholar
  23. 23.
    Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent Software Systems. International Journal of Software Engineering and Knowledge Engineering 11(3), 1–24 (2001)CrossRefGoogle Scholar
  24. 24.
    Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. Int. Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)CrossRefGoogle Scholar
  25. 25.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Friedman, J.H., Tukey, J.W.: A Projection Pursuit Algorithm for Exploratory Data-Analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)zbMATHCrossRefGoogle Scholar
  27. 27.
    Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. Advances in Neural Information Processing Systems 10, 350–356 (1998)Google Scholar
  28. 28.
    Herrero, A., Corchado, E., Gastaldo, P., Zunino, R.: A Comparison of Neural Projection Techniques Applied to Intrusion Detection Systems. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN’2007. LNCS, vol. 4507, pp. 1138–1146. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Álvaro Herrero
    • 1
  • Emilio Corchado
    • 1
  • María A. Pellicer
    • 1
  • Ajith Abraham
    • 2
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Norwegian University of Science and TechnologyNorway

Personalised recommendations