Advertisement

An LP-Based Heuristic for Optimal Planning

  • Menkes van den Briel
  • J. Benton
  • Subbarao Kambhampati
  • Thomas Vossen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4741)

Abstract

One of the most successful approaches in automated planning is to use heuristic state-space search. A popular heuristic that is used by a number of state-space planners is based on relaxing the planning task by ignoring the delete effects of the actions. In several planning domains, however, this relaxation produces rather weak estimates to guide search effectively. We present a relaxation using (integer) linear programming that respects delete effects but ignores action ordering, which in a number of problems provides better distance estimates. Moreover, our approach can be used as an admissible heuristic for optimal planning.

Keywords

Automated planning improving admissible heuristics optimal relaxed planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational Intelligence 11(4), 625–655 (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Benton, J., van den Briel, M.H.L., Kambhampati, S.: A hybrid linear programming and relaxed plan heuristic for partial satisfaction planning problems. In: Proceedings of the 17th International Conference on Automated Planning and Scheduling (to appear, 2007)Google Scholar
  3. 3.
    Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceedings of the 14th International Joint Conference on Artificial Inteligence, pp. 1636–1642 (1995)Google Scholar
  4. 4.
    Bonet, B., Loerincs, G., Geffner, H.: A fast and robust action selection mechanism for planning. In: Proceedings of the 14th National Conference on Artificial Intelligence, pp. 714–719 (1997)Google Scholar
  5. 5.
    Bonet, B., Geffner, H.: Planning as heuristic search. Aritificial Intelligence 129(1), 5–33 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Botea, A., Müller, M., Schaeffer, J.: Fast planning with iterative macros. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1828–1833 (2007)Google Scholar
  7. 7.
    van den Briel, M.H.L., Kambhampati, S., Vossen, T.: Reviving integer programming Approaches for AI planning: A branch-and-cut framework. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling, pp. 310–319 (2005)Google Scholar
  8. 8.
    Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial Intelligence 26(1-2), 165–204 (1995)MathSciNetGoogle Scholar
  9. 9.
    Bylander, T.: A linear programming heuristic for optimal planning. In: Proceedings of the 14th National Conference on Artificial Intelligence, pp. 694–699 (1997)Google Scholar
  10. 10.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  11. 11.
    ILOG Inc.: ILOG CPLEX 8.0 user’s manual. Mountain View, CA (2002)Google Scholar
  12. 12.
    Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings of the International Conference on Artificial Intelligence Planning and Scheduling (2000)Google Scholar
  13. 13.
    Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Research 26, 191–246 (2006)Google Scholar
  14. 14.
    Hoffmann, J.: Where ”ignoring delete lists” works: Local search topology in planning benchmarks. Journal of Artificial Intelligence Research 24, 685–758 (2005)zbMATHGoogle Scholar
  15. 15.
    Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)zbMATHGoogle Scholar
  16. 16.
    Jonsson, P., Bäckström, C.: Tractable plan existence does not imply tractable plan generation. Annals of Mathematics and Artificial Intelligence 22(3), 281–296 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    McDermott, D.: A heuristic estimator for means-ends analysis in planning. In: Proceedings of the 3rd International Conference on Artificial Intelligence Planning Systems, pp. 142–149 (1996)Google Scholar
  18. 18.
    McDermott, D.: Using regression-match graphs to control search in planning. Artificial Intelligence 109(1-2), 111–159 (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Technical report 216 (2005)Google Scholar
  20. 20.
    Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of the 14th International Conference on Automated Planning and Scheduling, pp. 150–159 (2004)Google Scholar
  21. 21.
    Vossen, T., Ball, B., Lotem, A., Nau, D.S.: On the use of integer programming models in AI planning. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 304–309 (1999)Google Scholar
  22. 22.
    Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1178–1195 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Menkes van den Briel
    • 1
  • J. Benton
    • 2
  • Subbarao Kambhampati
    • 2
  • Thomas Vossen
    • 3
  1. 1.Arizona State University, Department of Industrial Engineering 
  2. 2.Department of Computer Science and Engineering, Tempe AZ, 85287USA
  3. 3.University of Colorado, Leeds School of Business, Boulder CO, 80309USA

Personalised recommendations