Advertisement

Advisors for Incremental Propagation

  • Mikael Z. Lagerkvist
  • Christian Schulte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4741)

Abstract

While incremental propagation for global constraints is recognized to be important, little research has been devoted to how propagator-centered constraint programming systems should support incremental propagation. This paper introduces advisors as a simple and efficient, yet widely applicable method for supporting incremental propagation in a propagator-centered setting. The paper presents how advisors can be used for achieving different forms of incrementality and evaluates cost and benefit for several global constraints.

Keywords

Regular Language Global Constraint Memory Overhead Asymptotic Complexity Domain Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge, United Kingdom (2003)Google Scholar
  2. 2.
    Benhamou, F.: Heterogeneous constraint solving. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 62–76. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Benhamou, F. (ed.): CP 2006. LNCS, vol. 4204. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Bessière, C., Régin, J.-C.: Arc consistency for general constraint networks: Preliminary results. In: IJCAI, vol. 1, pp. 398–404 (1997)Google Scholar
  5. 5.
    Bessière, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc consistency algorithm. Artificial Intelligence 165(2), 165–185 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carlsson, M.: Personal communication (2006)Google Scholar
  7. 7.
    Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The constraint logic programming language CHIP. In: Proceedings of the International Conference on Fifth Generation Computer Systems FGCS-88, Tokyo, Japan, pp. 693–702 (December 1988)Google Scholar
  9. 9.
    Gecode Team. Gecode: Generic constraint development environment (2006), Available from http://www.gecode.org
  10. 10.
    Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 98–102. IOS Press, Amsterdam (2006)Google Scholar
  11. 11.
    Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in Minion. In: Benhamou, [3], pp. 284–298Google Scholar
  12. 12.
    Harvey, W., Schimpf, J.: Bounds consistency techniques for long linear constraints. In: Beldiceanu, N., Brisset, P., Carlsson, M., Laburthe, F., Henz, M., Monfroy, E., Perron, L., Schulte, C. (eds.) Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a workshop of CP 2002, number TRA9/02, pp. 39–46, 55 Science Drive 2, Singapore 117599 (September 2002)Google Scholar
  13. 13.
    ILOG Inc., Mountain View, CA, USA. ILOG Solver 6.3 reference Manual (2006)Google Scholar
  14. 14.
    Intelligent Systems Laboratory: SICStus Prolog user’s manual, 4.0.0. Technical report, Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Sweden (2007)Google Scholar
  15. 15.
    Laburthe, F.: CHOCO: implementing a CP kernel. In: Beldiceanu, N., Harvey, W., Henz, M., Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a post-conference workshop of CP 2000, number TRA9/00, pp. 71–85, 55 Science Drive 2, Singapore 117599 (September 2000)Google Scholar
  16. 16.
    Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table constraints. In: Benhamou, [3] pp. 284–298Google Scholar
  17. 17.
    Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mohr, R., Masini, G.: Good old discrete relaxation. In: Kodratoff, Y. (ed.) Proceedings of the 8th European Conference on Artificial Intelligence, Munich, Germany, pp. 651–656. Pitmann Publishing (1988)Google Scholar
  19. 19.
    Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, [25] pp. 482–495Google Scholar
  20. 20.
    Quimper, C.-G., Walsh, T.: The all different and global cardinality constraints on set, multiset and tuple variables. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle, WA, USA, vol. 1, pp. 362–367. AAAI Press, Stanford, California, USA (1994)Google Scholar
  22. 22.
    Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, ch. 14, pp. 495–526. Elsevier Science Publishers, Amsterdam, The Netherlands (2006)Google Scholar
  23. 23.
    Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Wallace [25], pp. 619–633. An extended version is available as [24]Google Scholar
  24. 24.
    Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines (2006), Available from http://arxiv.org/abs/cs.AI/0611009
  25. 25.
    Wallace, M. (ed.): CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mikael Z. Lagerkvist
    • 1
  • Christian Schulte
    • 1
  1. 1.School of Information and Communication Technology, KTH - Royal Institute of TechnologySweden

Personalised recommendations