A Generic Geometrical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional Objects

  • N. Beldiceanu
  • M. Carlsson
  • E. Poder
  • R. Sadek
  • C. Truchet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4741)


This paper introduces a geometrical constraint kernel for handling the location in space and time of polymorphic k-dimensional objects subject to various geometrical and time constraints. The constraint kernel is generic in the sense that one of its parameters is a set of constraints on subsets of the objects. These constraints are handled globally by the kernel.

We first illustrate how to model several placement problems with the constraint kernel. We then explain how new constraints can be introduced and plugged into the kernel. Based on these interfaces, we develop a generic k-dimensional lexicographic sweep algorithm for filtering the attributes of an object (i.e., its shape and the coordinates of its origin as well as its start, duration and end in time) according to all constraints where the object occurs. Experiments involving up to hundreds of thousands of objects and 1 million integer variables are provided in 2, 3 and 4 dimensions, both for simple shapes (i.e., rectangles, parallelepipeds) and for more complex shapes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)CrossRefGoogle Scholar
  2. 2.
    Beldiceanu, N., Guo, Q., Thiel, S.: Non-overlapping constraints between convex polytopes. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 392–407. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-overlapping rectangles constraints. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–391. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint programming approach for the orthogonal packing problem. Computers and Operation Research (to appear)Google Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. SICS Technical Report T2007:08, Swedish Institute of Computer Science (2007)Google Scholar
  6. 6.
    Van Hentenryck, P.: Scheduling and packing in the constraint language cc(FD). In: Zweben, M., Fox, M. (eds.) Intelligent Scheduling, Morgan Kaufmann, San Francisco (1994)Google Scholar
  7. 7.
    Colmerauer, A., Gilleta, B.: Solving the three-dimensional pentamino puzzle. Technical report, Laboratoire d’Informatique de Marseille (1999), http://www.lim.univ-mrs.fr/~colmer/ArchivesPublications/Giletta/misc99.pdf
  8. 8.
    Bouwkamp, C.J., Duijvestijn, A.J.W.: Catalogue of simple perfect squared squares of orders 21 through 25. Technical Report EUT Report 92-WSK-03, Eindhoven University of Technology, The Netherlands (November 1992)Google Scholar
  9. 9.
    Clautiaux, F., Carlier, J., Moukrim, A.: A new exact method for the two-dimensional orthogonal packing problem. European Journal of Operational Research (to appear)Google Scholar
  10. 10.
    Van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint processing in cc(FD). Manuscript (1991)Google Scholar
  11. 11.
    Sidebottom, G.: A Language for Optimizing Constraint Propagation. PhD thesis, Simon Fraser University (1993)Google Scholar
  12. 12.
    Palù, A.D., Dovier, A., Pontelli, E.: A new constraint solver for 3D lattices and its application to the protein folding problem. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 48–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • N. Beldiceanu
    • 1
  • M. Carlsson
    • 2
  • E. Poder
    • 1
  • R. Sadek
    • 1
  • C. Truchet
    • 3
  1. 1.École des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 NantesFrance
  2. 2.SICS, P.O. Box 1263, SE-164 29 KistaSweden
  3. 3.Université de Nantes, LINA FRE CNRS 2729, FR-44322 NantesFrance

Personalised recommendations