Multi-break Rearrangements: From Circular to Linear Genomes

  • Max A. Alekseyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4751)

Abstract

Multi-break rearrangements break a genome into multiple fragments and further glue them together in a new order. While 2-break rearrangements represent standard reversals, fusions, fissions, and translocations operations; 3-break rearrangements are a natural generalization of transpositions and inverted transpositions. Multi-break rearrangements in circular genomes were studied in depth in [1] and were further applied to the analysis of chromosomal evolution in mammalian genomes [2]. In this paper we extend these results to the more difficult case of linear genomes. In particular, we give lower bounds for the rearrangement distance between linear genomes and use these results to analyze comparative genomic architecture of mammalian genomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseyev, M.A., Pevzner, P.A.: Multi-Break Rearrangements and Chromosomal Evolution. Theoretical Computer Science (to appear, 2007)Google Scholar
  2. 2.
    Alekseyev, M.A., Pevzner, P.A.: Are There Rearrangement Hotspots in the Human Genome? PLos Computational Biology (to appear, 2007)Google Scholar
  3. 3.
    Sachs, R.K., Levy, D., Hahnfeldt, P., Hlatky, L.: Quantitative analysis of radiation-induced chromosome aberrations. Cytogenetic and Genome Research 104, 142–148 (2004)CrossRefGoogle Scholar
  4. 4.
    Levy, D., Vazquez, M., Cornforth, M., Loucas, B., Sachs, R.K., Arsuaga, J.: Comparing DNA damage-processing pathways by computer analysis of chromosome painting data. J. Comput. Biol. 11, 626–641 (2004)CrossRefGoogle Scholar
  5. 5.
    Vazquez, M., et al.: Computer analysis of mFISH chromosome aberration data uncovers an excess of very complicated metaphases. Int. J. Radiat. Biol. 78(12), 1103–1115 (2002)CrossRefGoogle Scholar
  6. 6.
    Sachs, R.K., Arsuaga, J., Vazquez, M., Hlatky, L., Hahnfeldt, P.: Using graph theory to describe and model chromosome aberrations. Radiat Research 158, 556–567 (2002)CrossRefGoogle Scholar
  7. 7.
    Alekseyev, M.A., Pevzner, P.A.: Whole Genome Duplications, Multi-Break Rearrangements, and Genome Halving Theorem. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 665–679 (2007)Google Scholar
  8. 8.
    Nadeau, J.H., Taylor, B.A.: Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse. Proceedings of the National Academy of Sciences 81(3), 814–818 (1984)CrossRefGoogle Scholar
  9. 9.
    Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences 100, 7672–7677 (2003)CrossRefGoogle Scholar
  10. 10.
    Sankoff, D., Trinh, P.: Chromosomal breakpoint re-use in the inference of genome sequence rearrangement. In: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology (RECOMB), pp. 30–35 (2004)Google Scholar
  11. 11.
    Peng, Q., Pevzner, P.A., Tesler, G.: The Fragile Breakage versus Random Breakage Models of Chromosome Evolution. PLoS Comput. Biol. 2, 14 (2006)CrossRefGoogle Scholar
  12. 12.
    Murphy, W.J., Larkin, D.M., van der Wind, A.E., Bourque, G., Tesler, G., Auvil, L., Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, C.N., Milan, D., Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva, M.B., Schook, L.B., Skow, L.C., Welge, M., Womack, J.E., OBrien, S.J., Pevzner, P.A., Lewin, H.A.: Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Map. Science 309(5734), 613–617 (2005)CrossRefGoogle Scholar
  13. 13.
    van der Wind, A.E., Kata, S.R., Band, M.R., Rebeiz, M., Larkin, D.M., Everts, R.E., Green, C.A., Liu, L., Natarajan, S., Goldammer, T., Lee, J.H., McKay, S., Womack, J.E., Lewin, H.A.: A 1463 Gene Cattle-Human Comparative Map With Anchor Points Defined by Human Genome Sequence Coordinates. Genome Research 14(7), 1424–1437 (2004)CrossRefGoogle Scholar
  14. 14.
    Bailey, J., Baertsch, R., Kent, W., Haussler, D., Eichler, E.: Hotspots of mammalian chromosomal evolution. Genome Biology 5(4), R23 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhao, S., Shetty, J., Hou, L., Delcher, A., Zhu, B., Osoegawa, K., de Jong, P., Nierman, W.C., Strausberg, R.L., Fraser, C.M.: Human, Mouse, and Rat Genome Large-Scale Rearrangements: Stability Versus Speciation. Genome Research 14, 1851–1860 (2004)CrossRefGoogle Scholar
  16. 16.
    Webber, C., Ponting, C.P.: Hotspots of mutation and breakage in dog and human chromosomes. Genome Research 15(12), 1787–1797 (2005)CrossRefGoogle Scholar
  17. 17.
    Hinsch, H., Hannenhalli, S.: Recurring genomic breaks in independent lineages support genomic fragility. BMC Evolutionary Biology 6, 90 (2006)CrossRefGoogle Scholar
  18. 18.
    Ruiz-Herrera, A., Castresana, J., Robinson, T.J.: Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biology 7, R115 (2006)CrossRefGoogle Scholar
  19. 19.
    Mehan, M.R., Almonte, M., Slaten, E., Freimer, N.B., Rao, P.N., Ophoff, R.A.: Analysis of segmental duplications reveals a distinct pattern of continuation-of-synteny between human and mouse genomes. Human Genetics 121(1), 93–100 (2007)CrossRefGoogle Scholar
  20. 20.
    Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A.Z, Engstrom, P.G., Fredman, D., Akalin, A., Caccamo, M., Sealy, I., Howe, K., Ghislain, J., Pezeron, G., Mourrain, P., Ellingsen, S., Oates, A.C., Thisse, C., Thisse, B., Foucher, I., Adolf, B., Geling, A., Lenhard, B., Becker, T.S.: Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Research 17(5), 545–555 (2007)CrossRefGoogle Scholar
  21. 21.
    Sankoff, D.: The signal in the genome. PLoS Computational Biology 2(4), 320–321 (2006)CrossRefGoogle Scholar
  22. 22.
    Bafna, V., Pevzner, P.A.: Genome rearrangement and sorting by reversals. SIAM Journal on Computing 25, 272–289 (1996)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pevzner, P.A.: Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge (2000)MATHGoogle Scholar
  24. 24.
    Hannenhalli, S., Pevzner, P.: Transforming men into mouse (polynomial algorithm for genomic distance problem). In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 581–592 (1995)Google Scholar
  25. 25.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65, 587–609 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ozery-Flato, M., Shamir, R.: Two Notes on Genome Rearrangement. Journal of Bioinformatics and Computational Biology 1, 71–94 (2003)CrossRefGoogle Scholar
  27. 27.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefGoogle Scholar
  28. 28.
    Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and inverted transpositions. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 563–577. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoret. Comput. Sci. 210, 327–339 (1999)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sorting by transpositions and transreversals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 50–61. Springer, Heidelberg (2004)Google Scholar
  31. 31.
    Lin, G.H., Xue, G.: Signed genome rearrangements by reversals and transpositions: models and approximations. Theoret. Comput. Sci. 259, 513–531 (2001)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lin, Y.C., Lu, C.L., Chang, H.-Y., Tang, C.Y.: An Efficient Algorithm for Sorting by Block-Interchanges and Its Application to the Evolution of Vibrio Species. J. Comput. Biol. 12, 102–112 (2005)CrossRefGoogle Scholar
  33. 33.
    Radcliffe, A.J., Scott, A.D., Wilmer, E.L.: Reversals and Transpositions Over Finite Alphabets. SIAM J. Discrete Math. 19, 224–244 (2005)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Walter, M.E., Dias, Z., Meidanis, J.: Reversal and transposition distance of linear chromosomes. In: String Processing and Information Retrieval: A South American Symposium (SPIRE), pp. 96–102 (1998)Google Scholar
  35. 35.
    Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. SIAM J. Discrete Math. 11, 224–240 (1998)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow (1999)Google Scholar
  37. 37.
    Walter, M.E., Reginaldo, L., Curado, A.F., Oliveira, A.G.: Working on the Problem of Sorting by Transpositions on Genome Rearrangements. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 372–383. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  39. 39.
    Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Transpositions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 204–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Pevzner, P., Tesler, G.: Genome Rearrangements in Mammalian Evolution: Lessons from Human and Mouse Genomes. Genome Research 13(1), 37–45 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Max A. Alekseyev
    • 1
  1. 1.Department of Computer Science and Engineering, University of California at San DiegoUSA

Personalised recommendations