Multi-objective Genetic Programming for Multiple Instance Learning

  • Amelia Zafra
  • Sebastián Ventura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4701)


This paper introduces the use of multi-objective evolutionary algorithms in multiple instance learning. In order to achieve this purpose, a multi-objective grammar-guided genetic programming algorithm (MOG3P-MI) has been designed. This algorithm has been evaluated and compared to other existing multiple instance learning algorithms. Research on the performance of our algorithm is carried out on two well-known drug activity prediction problems, Musk and Mutagenesis, both problems being considered typical benchmarks in multiple instance problems. Computational experiments indicate that the application of the MOG3P-MI algorithm improves accuracy and decreases computational cost with respect to other techniques.


Multiple Instance Inductive Logic Programming Multiple Instance Learn Automatic Image Annotation Inductive Logic Programming System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artifical Intelligence 89(1-2), 31–71 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Yang, C., Lozano-Perez, T.: Image database retrieval with multiple-instance learning techniques. In: ICDE 2000: Proceedings of the 16th International Conference on Data Engineering, p. 233. IEEE Computer Society Press, Washington (2000)Google Scholar
  3. 3.
    Qi, X., Han, Y.: Incorporating multiple svms for automatic image annotation. Pattern Recognition 40(2), 728–741 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: NIPS 2002: Proceedings of Neural Information Processing System, pp. 561–568 (2002)Google Scholar
  5. 5.
    Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Applied Intelligence 22(2), 135–147 (2005)CrossRefGoogle Scholar
  6. 6.
    Xue, X., Han, J., Jiang, Y., Zhou, Z.: Link recommendation in web index page based on multi-instance learning techniques. Jisuanji Yanjiu yu Fazhan/Computer Research and Development 44(3), 406–411 (2007)CrossRefGoogle Scholar
  7. 7.
    Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS 1997: Proceedings of Neural Information Processing System 10, pp. 570–576. MIT Press, Cambridge (1997)Google Scholar
  8. 8.
    Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning technique. In: NIPS 2001: Proceedings of Neural Information Processing System, pp. 1073–1080 (2001)Google Scholar
  9. 9.
    Zucker, J.D., Chevaleyre, Y.: Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem. In: Proceedings of the 14th Canadian Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence, Ottawa, Canada, pp. 204–214 (2000)Google Scholar
  10. 10.
    Ruffo, G.: Learning single and multiple instance decision tree for computer security applications. PhD thesis, Department of Computer Science. University of Turin, Torino, Italy (2000)Google Scholar
  11. 11.
    Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach. In: ICML 2000: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 1119–1126. Morgan Kaufmann Inc., San Francisco (2000)Google Scholar
  12. 12.
    Tao, Q., Scott, S., Vinodchandran, N.V., Osugi, T.T.: SVM-based generalized multiple-instance learning via approximate box counting. In: ICML 2004: Proceedings of the twenty-first international conference on Machine learning, pp. 799–806. ACM Press, New York (2004)Google Scholar
  13. 13.
    Zhang, M.L., Zhou, Z.H.: Ensembles of multi-instance neural networks. In: Intelligent information processing II, vol. 163, pp. 471–474. Springer Boston, London, UK (2005)CrossRefGoogle Scholar
  14. 14.
    Zhang, M.L., Zhou, Z.H.: Adapting RBF neural networks to multi-instance learning. Neural Processing Letters 23(1), 1–26 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhou, Z.H.: Multi-instance learning from supervised view. Journal Computer Science and Technology 21(5), 800–809 (2006)CrossRefGoogle Scholar
  16. 16.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)Google Scholar
  17. 17.
    Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Genetic programming for knowledge discovery in chest-pain diagnosis. IEEE Engineering in Medicine and Biology Magazine 19(4), 38–44 (2000)Google Scholar
  18. 18.
    Tan, K.C., Tay, Lee, A., Heng, T.H., C.M.: Mining multiple comprehensible classification rules using genetic programming. In: CEC 2002: Proceedings of the Congress on Evolutionary Computation. Honolulu, HI, USA, vol. 2, pp. 1302–1307(2002)Google Scholar
  19. 19.
    Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: A java framework for evolutionary computation soft computing. Soft Computing (in Press, 2007)Google Scholar
  20. 20.
    Blockeel, H., Raedt, L.D., Jacobs, N., Demoen, B.: Scaling up inductive logic programming by learning from interpretations. Data Mining Knowledge Discovery 3(1), 59–93 (1999)CrossRefGoogle Scholar
  21. 21.
    Chevaleyre, Y., Zucker, J.D.: A framework for learning rules from multiple instance data. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 49–60. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: ICML 1998: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 341–349. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  23. 23.
    Srinivasan, A., Muggleton, S.: Comparing the use of background knowledge by inductive logic programming systems. In: ILP 1995: Proceedings of International Workshop on Inductive Logic Programming (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Amelia Zafra
    • 1
  • Sebastián Ventura
    • 1
  1. 1.Department of Computer Science and Numerical Analysis, University of Córdoba 

Personalised recommendations