Calibration of a Multi-camera Rig from Non-overlapping Views

  • Sandro Esquivel
  • Felix Woelk
  • Reinhard Koch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

A simple, stable and generic approach for estimation of relative positions and orientations of multiple rigidly coupled cameras is presented in this paper. The algorithm does not impose constraints on the field of view of the cameras and works even in the extreme case when the sequences from the different cameras are totally disjoint (i.e. when no part of the scene is captured by more than one camera). The influence of the rig motion on the existence of a unique solution is investigated and degenerate rig motions are identified. Each camera captures an individual sequence which is afterwards processed by a structure and motion (SAM) algorithm resulting in positions and orientations for each camera. The unknown relative transformations between the rigidly coupled cameras are estimated utilizing the rigidity constraint of the rig.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Zisserman, A., et al.: Metric Calibration of a Stereo Rig. In: Proc. WRVS (1995)Google Scholar
  3. 3.
    Frahm, J.M., et al.: Pose Estimation for Multi-Camera Systems. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Tsai, R.Y.: A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Jour. RA 3(4), 323–344 (1987)CrossRefGoogle Scholar
  5. 5.
    Pollefeys, M., et al.: Visual Modeling with a Hand-Held Camera. IJCV 59(3), 207–232 (2004)CrossRefGoogle Scholar
  6. 6.
    Caspi, Y., Irani, M.: Alignment of Non-Overlapping Sequences. In: Proc. ICCV (2001)Google Scholar
  7. 7.
    Horaud, R.P., Dornaika, F.: Hand-Eye Calibration. IJRR 14(3), 195–210 (1995)Google Scholar
  8. 8.
    Shiu, Y.C., Ahmad, S.: Calibration of Wrist Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX = XB. IEEE Jour. RA 5(1), 16–29 (1989)Google Scholar
  9. 9.
    Chou, J.C.K., Kamel, M.: Finding the Position and Orientation of a Sensor in a Robot Manipulator Using Quaternions. IJRR 10(3), 240–254 (1991)Google Scholar
  10. 10.
    Horn, B.K.P.: Closed-Form Solution of Absolute Orientation Using Unit Quaternions. J. Opt. Soc. Am. A 4(4), 629 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Foerstner, W., Wrobel, B.: Mathematical Concepts in Photogrammetry. In: McGlone, J.C. (ed.) Manual of Photogrammetry, 5th edn. ASPRS, pp. 47–49 (2004)Google Scholar
  12. 12.
    Bouguet, J.Y.: Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sandro Esquivel
    • 1
  • Felix Woelk
    • 1
  • Reinhard Koch
    • 1
  1. 1.Christian-Albrechts-University, 24118 KielGermany

Personalised recommendations