Unifying Energy Minimization and Mutual Information Maximization for Robust 2D/3D Registration of X-Ray and CT Images

  • Guoyan Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)


Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.


similarity measure mutual information 2D/3D registration X-ray CT Markov random field Kullback-Leibler bound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penney, G.P., et al.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans Med Imaging 17, 586–595 (1998)CrossRefGoogle Scholar
  2. 2.
    Weese, J., et al.: An approach to 2D/3D registration of a vertebra in 2D x-ray fluoroscopies with 3D CT images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 119–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Wells, W., Viola, P., et al.: Multi-modal volume registration by maximization of mutual information. MedIA 1, 35–51 (1996)Google Scholar
  4. 4.
    Maes, F., Collignon, A., et al.: Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16, 187–1998 (1997)CrossRefGoogle Scholar
  5. 5.
    Pluim, J.P., et al.: Mutual information based registration of medical images: a survey. IEEE Trans Med Imaging 22, 986–1004 (2003)CrossRefGoogle Scholar
  6. 6.
    Brown, L.M.G., Boult, T.E.: Registration of planar film radiographs with computed tomography. In: MMBIA 1996, pp. 42–51 (1996)Google Scholar
  7. 7.
    Pluim, J., et al.: Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging 19, 809–814 (2000)CrossRefGoogle Scholar
  8. 8.
    Rueckert, D., Clarkson, M.J., et al.: Non-rigid registration using higher-order mutual information. SPIE Medical Imaging: image processing 3979, 438–447 (2000)Google Scholar
  9. 9.
    Sabuncu, M.R., Ramadge, P.J.: Spatial information in entropy-based image registration. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 132–141. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Russakoff, D.B., Tomasi, C., et al.: Image similarity using mutual information of regions. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Gan, R., Chung, A.C.S.: Multi-dimensional mutual information based robust image registration using maximum distance-gradient-magnitude. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 210–221. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Barber, D., Agakov, F.V.: The IM algorithm: a variational approach to information maximization. In: NIPS’03, vol. 16, MIT Press, Cambridge (2004)Google Scholar
  13. 13.
    Li, S.Z.: Markov random field modeling in computer vision. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Jonić, S., Thévenaz, P., et al.: An optimized spline-based registration of a 3D CT to a set of C-arm images. Int J Biomed Imaging, Article ID 47197, 1–12 (2006)CrossRefGoogle Scholar
  15. 15.
    von de Kraats, E.B., Penney, G.P., et al.: Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans Med Imaging 24, 1177–1189 (2005)CrossRefGoogle Scholar
  16. 16.
    LaRose, D., et al.: Post-operative measurement of acetabular cup position using X-ray/CT registration. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 1104–1113. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Jaramaz, B., Eckman, K.: 2D/3D registration for measurement of implant alignment after total hip replacement. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 653–661. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Guoyan Zheng
    • 1
  1. 1.MEM Research Center, University of Bern, Stauffacherstrasse 78, CH-3014, BernSwitzerland

Personalised recommendations