3D Invariants with High Robustness to Local Deformations for Automated Pollen Recognition

  • Olaf Ronneberger
  • Qing Wang
  • Hans Burkhardt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

We present a new technique for the extraction of features from 3D volumetric data sets based on group integration. The features are invariant to translation, rotation and global radial deformations. They are robust to local arbitrary deformations and nonlinear gray value changes, but are still sensitive to fine structures. On a data set of 389 confocally scanned pollen from 26 species we get a precision/recall of 99.2% with a simple 1NN classifier. On volumetric transmitted light data sets of about 180,000 airborne particles, containing about 22,700 pollen grains from 33 species, recorded with a low-cost optic in a fully automated online pollen monitor the mean precision for allergenic pollen is 98.5% (recall: 86.5%) and for the other pollen 97.5% (recall: 83.4%).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, G.P., Hodgson, R.M., Marsland, S.R., Arnold, G., Flemmer, R.C., Flenley, J., Fountain, D.W.: Automatic recognition of light-microscope pollen images. In: Proc of Image Vision and Computing New Zealand (2006)Google Scholar
  2. 2.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  3. 3.
    Haasdonk, B., Halawani, A., Burkhardt, H.: Adjustable invariant features by partial Haar-integration. In: Proc. of the 17th ICPR, Cambridge (2004)Google Scholar
  4. 4.
    Ranzato, M., Taylor, P.E., House, J.M., Flagan, R.C., LeCun, Y., Perona, P.: Automatic recognition of biological particles in microscopic images. Pattern Recognition Letters 28(1), 31–39 (2007)CrossRefGoogle Scholar
  5. 5.
    Reisert, M., Burkhardt, H.: Invariant features for 3d-data based on group integration using directional information and spherical harmonic expansion. In: Proc. of the ICPR, Hong Kong (2006)Google Scholar
  6. 6.
    Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose object recognition in 3d volume data sets using gray-scale invariants – classification of airborne pollen-grains recorded with a confocal laser scanning microscope. In: Proc. of the ICPR, Quebec (2002)Google Scholar
  7. 7.
    Ronneberger, O., Fehr, J., Burkhardt, H.: Voxel-wise gray scale invariants for simultaneous segmentation and classification. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. LNCS, vol. 3663, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Schulz, J., Schmidt, T., Ronneberger, O., Burkhardt, H., Pasternak, T., Dovzhenko, A., Palme, K.: Fast scalar and vectorial grayscale based invariant features for 3d cell nuclei localization and classification. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition. LNCS, vol. 4174, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Schulz-Mirbach, H.: Invariant features for gray scale images. In: Sagerer, G., Posch, S., Kummert, F. (eds.) 17. DAGM-Symposium “Mustererkennung”, Informatik aktuell, pp. 1–14. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7(3), 359–369 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Olaf Ronneberger
    • 1
  • Qing Wang
    • 1
  • Hans Burkhardt
    • 1
  1. 1.Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Lehrstuhl für Mustererkennung und Bildverarbeitung, Georges-Köhler-Allee Geb. 052, 79110 Freiburg, Deutschland 

Personalised recommendations