A Subiteration-Based Surface-Thinning Algorithm with a Period of Three

  • Kálmán Palágyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

Thinning on binary images is an iterative layer by layer erosion until only the “skeletons” of the objects are left. This paper presents an efficient parallel 3D surface–thinning algorithm. A three–subiteration strategy is proposed: the thinning operation is changed from iteration to iteration with a period of three according to the three deletion directions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arcelli, C., Sanniti di Baja, G., Serino, L.: New removal operators for surface skeletonization. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 555–566. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Aktouf, Z.: A 3D thinning algorithms using subfields. In: Proc. SPIE Conf. on Vision Geometry III, vol. 2356, pp. 113–124 (1994)Google Scholar
  3. 3.
    Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recognition Letters 16, 979–986 (1995)CrossRefGoogle Scholar
  4. 4.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  5. 5.
    Gong, W.X., Bertrand, G.: A simple parallel 3D thinning algorithm. In: Proc. 10th Int. Conf. on Pattern Recognition, pp. 188–190 (1990)Google Scholar
  6. 6.
    Hall, R.W.: Parallel connectivity–preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological algorithms for digital image processing, pp. 145–179. Elsevier Science, Amsterdam (1996)CrossRefGoogle Scholar
  7. 7.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  8. 8.
    Lee, T., Kashyap, R.L., Chu, C.: Building skeleton models via 3–D medial surface/axis thinning algorithms. CVGIP: Graphical Models and Image Processing 56, 462–478 (1994)CrossRefGoogle Scholar
  9. 9.
    Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on P-simple points. Discrete Applied Mathematics 151, 198–228 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Proc. 11th IEEE Internat. Conf. on Pattern Recognition, pp. 232–235 (1992)Google Scholar
  11. 11.
    Manzanera, A., Bernard, T.M., Pretêux, F., Longuet, B.: Medial faces from a concise 3D thinning algorithm. In: Proc. 7th IEEE Internat. Conf. Computer Vision, ICCV 1999, pp. 337–343 (1999)Google Scholar
  12. 12.
    Mukherjee, J., Das, P.P., Chatterjee, B.N.: On connectivity issues of ESPTA. Pattern Recognition Letters 11, 643–648 (1990)MATHCrossRefGoogle Scholar
  13. 13.
    Palágyi, K., Kuba, A.: A 3D 6–subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters 19, 613–627 (1998)MATHCrossRefGoogle Scholar
  14. 14.
    Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 325–336. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Palágyi, K., Kuba, A.: A parallel 3D 12–subiteration thinning algorithm. Graphical Models and Image Processing 61, 199–221 (1999)CrossRefGoogle Scholar
  16. 16.
    Palágyi, K.: A 3-subiteration 3D thinning algorithm for extracting medial surfaces. Pattern Recognition Letters 23, 663–675 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Palágyi, K.: Efficient implementation of 3D thinning algorithms. In: Proc. 6th Conf. Hungarian Association for Image Processing and Pattern Recognition, pp. 266–274 (2007)Google Scholar
  18. 18.
    Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3–D pictures. Computer Graphics and Image Processing 17, 315–331 (1981)CrossRefGoogle Scholar
  19. 19.
    Xie, W., Thompson, R.P., Perucchio, R.: A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton. Pattern Recognition 36, 1529–1544 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kálmán Palágyi
    • 1
  1. 1.Department of Image Processing and Computer Graphics, University of SzegedHungary

Personalised recommendations