Advertisement

Occlusion Modeling by Tracking Multiple Objects

  • Christian Schmaltz
  • Bodo Rosenhahn
  • Thomas Brox
  • Joachim Weickert
  • Daniel Cremers
  • Lennart Wietzke
  • Gerald Sommer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4713)

Abstract

This article introduces a technique for region-based pose tracking of multiple objects. Our algorithm uses surface models of the objects to be tracked and at least one calibrated camera view, but does not require color, texture, or other additional properties of the objects. By optimizing a joint energy defined on the pose parameters of all objects, the proposed algorithm can explicitly handle occlusions between different objects. Tracking results in simulated as well as real world scenes demonstrate the effects of occlusion and how they are handled by the proposed method.

Keywords

Multiple Object Rigid Motion Tracking Result Point Correspondence Multiple Object Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abidi, M.A., Chandra, T.: Pose estimation for camera calibration and landmark tracking. In: Proc. International Conf. Robotics and Automation, Cincinnati, May 1990, vol. 1, pp. 420–426 (1990)Google Scholar
  2. 2.
    Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1) (January 2006)Google Scholar
  3. 3.
    Beveridge, J.: Local Search Algorithms for Geometric Object Recognition: Optimal Correspondence and Pose. PhD thesis, Department of Computer Science, University of Massachusetts, Amherst (May 1993)Google Scholar
  4. 4.
    Brox, T., Rosenhahn, B., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Drummond, T., Cipolla, R.: Real-time tracking of multiple articulated structures in multiple views. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 20–36. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Goddard, J.: Pose And Motion Estimation From Vision Using Dual Quaternion-Based Extended Kalman Filtering. PhD thesis, Imaging, Robotics, and Intelligent Systems Laboratory, University of Tennessee, Knoxville-College of Engineering, Tennessee (1997)Google Scholar
  7. 7.
    Grimson, W., Lozano–Perez, T., Huttenlocher, D.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, Baton (1990)Google Scholar
  8. 8.
    Hue, C., Cadre, J.L., Perez, P.: Tracking multiple objects with particle filtering. IEEE Trans. on Aerospace and Electronic Systems 38(3), 791–812 (2002)CrossRefGoogle Scholar
  9. 9.
    Kriegman, D., Vijayakumar, B., Ponce, J.: Constraints for recognizing and locating curved 3D objects from monocular image features. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 829–833. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    Lowe, D.: Solving for the parameters of object models from image descriptions. In: Proc. ARPA Image Understanding Workshop, College Park, April 1980, pp. 121–127 (1980)Google Scholar
  11. 11.
    Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  12. 12.
    Rosenhahn, B., Sommer, G.: Adaptive pose estimation for different corresponding entities. In: Van Gool, L. (ed.) Pattern Recognition. LNCS, vol. 2449, pp. 265–273. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Schmaltz, C., Rosenhahn, B., Brox, T., Cremers, D., Weickert, J., Wietzke, L., Sommer, G.: Region-based pose tracking. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) Pattern Recognition and Image Analysis, Girona, Spain, June 2007. LNCS, vol. 4478, pp. 56–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Shevlin, F.: Analysis of orientation problems using Plucker lines. In: Proc. 14th International Conference on Pattern Recognition, Washington, DC, USA, vol. 1, pp. 685–689. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  15. 15.
    Särkkä, S., Vehtari, A., Lampinen, J.: Rao-Blackwellized Monte Carlo data association for multiple target tracking. In: Proc. 7th International Conference on Information Fusion, vol. 1, pp. 583–590 (2004)Google Scholar
  16. 16.
    Taycher, L., Shakhnarovich, G., Demirdjian, D., Darrell, T.: Conditional random people: Tracking humans with CRFs and grid filters. In: Proc. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, December 2006, pp. 222–229. IEEE Computer Society Press, New York (2006)Google Scholar
  17. 17.
    Winkler, S., Wunsch, P., Hirzinger, G.: A feature map approach to real-time 3-D object pose estimation from single 2-D perspective views. In: Paulus, E., Wahl, F. (eds.) Mustererkennung 1997 (Proc. DAGM), pp. 129–136. Springer, Berlin (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Schmaltz
    • 1
  • Bodo Rosenhahn
    • 2
  • Thomas Brox
    • 3
  • Joachim Weickert
    • 1
  • Daniel Cremers
    • 3
  • Lennart Wietzke
    • 4
  • Gerald Sommer
    • 4
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Building E1.1, Saarland University, 66041 SaarbrückenGermany
  2. 2.Max-Planck Institute for Informatics, 66123 SaarbrückenGermany
  3. 3.Department of Computer Science,University of Bonn, 53117 BonnGermany
  4. 4.Institute of Computer Science, Christian-Albrecht-University, 24098 KielGermany

Personalised recommendations