Localising Multicast Using Application Predicates

  • Ian Wakeman
  • Stephen Cogdon
  • Laurent Mathy
  • Michael Fry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4725)


In this paper, we investigate how to incorporate an application metric into the construction of a multicast tree so as to facilitate the use of range constrained multicast. We first describe the construction and delivery protocols, show through an analysis drawing on stochastic geometry that the protocol is scalable, and provide simulations showing the performance of the protocol against trees derived from reverse path forwarding construction.


Virtual World Tree Size Multicast Tree Distribute Hash Table Short Path Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, B., Jamin, S., Zhang, L.: Host multicast: A framework for delivering multicast to end users. In: IEEE INFOCOM (2002)Google Scholar
  2. 2.
    Li, Z., Mohapatra, P.: Hostcast: A new overlay multicasting protocol. In: IEEE Int. Communications Conference (ICC), IEEE, Los Alamitos (2003)Google Scholar
  3. 3.
    Helder, D., Jamin, S.: End-host multicast communication using switchtrees protocols. In: Global and Peer-to-Peer Computing on Large Scale Distributed Systems (2002)Google Scholar
  4. 4.
    Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construction of an efficient overlay multicast infrastructure for real-time applications. In: IEEE INFOCOM, San Francisco, USA, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  5. 5.
    Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In: SIGCOMM 2002. Proceedings of the 2002 conference on Applications, technologies, architectures, and protocols for computer communications, October 2002, vol. 32(4), pp. 205–217. ACM Press, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Yang-hua, C., Rao, S., Seshan, S., Zhang, H.: A case for end system multicast. Selected Areas in Communications, IEEE Journal on 20(8), 1456–1471 (2002)CrossRefGoogle Scholar
  7. 7.
    Mathy, L., Canonico, R., Hutchison, D.: An overlay tree building protocol. In: Networked Group Communication, London, UK, pp. 76–87 (2001)Google Scholar
  8. 8.
    Macedomia, M., Zyda, M., Pratt, D., Brutzman, D., Barham, P.: Exploiting reality with multicast groups: a network architecture for large-scale virtual environments. In: Virtual Reality Annual International Symposium (VRAIS 1995), p. 2 (1995)Google Scholar
  9. 9.
    Ratnasamy, S., Ermolinskiy, A., Shenker, S.: Revisiting ip multicast. In: SIGCOMM (2006)Google Scholar
  10. 10.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Wiley, Chichester (1987)zbMATHGoogle Scholar
  11. 11.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. In: IEEE Infocom, vol. 2, pp. 594–602. IEEE, San Francisco, CA (1996)Google Scholar
  12. 12.
    Tan, S.-W., Waters, G., Crawford, J.: A performance comparison of self-organising application layer multicast overlay construction techniques. Computer Communications 29, 2322–2347 (2006)CrossRefGoogle Scholar
  13. 13.
    Cogdon, S.: Application-level multicast for group communication. Ph.D. dissertation, University of Sussex (2003)Google Scholar
  14. 14.
    Castro, M., Druschel, P., Rowstron, A.: Scribe: A large-scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications 20(8) (October 2002)Google Scholar
  15. 15.
    Bharambe, A., Rao, S., Padmanabhan, V., Seshan, S., Zhang, H.: The impact of heterogeneous bandwidth constraints on dht-based multicast protocols. In: The Fourth International Workshop on Peer-to-Peer Systems  (February 2005)Google Scholar
  16. 16.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-Addressable Network. In: Proc of SIGCOMM, ACM Press, New York (August 2001)Google Scholar
  17. 17.
    Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range queries. SIGCOMM Comput. Commun. Rev. 34(4), 323–366 (2004)CrossRefGoogle Scholar
  18. 18.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 45–57 (1984)Google Scholar
  19. 19.
    Soheili, A., Kalogeraki, V., Gunopulos, D.: Spatial queries in sensor networks. In: GIS 2005. Proceedings of the 13th annual ACM international workshop on Geographic information systems, pp. 61–70. ACM Press, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ian Wakeman
    • 1
  • Stephen Cogdon
    • 1
  • Laurent Mathy
    • 2
  • Michael Fry
    • 3
  1. 1.Dept of Informatics, University of Sussex, BrightonUK
  2. 2.Dept of Informatics, Lancaster University, LancasterUK
  3. 3.School of IT, University of Sydney, SydneyAustralia

Personalised recommendations