Unbounded Proof-Length Speed-Up in Deduction Modulo

  • Guillaume Burel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4646)

Abstract

In 1973, Parikh proved a speed-up theorem conjectured by Gödel 37 years before: there exist arithmetical formulæ that are provable in first order arithmetic, but whose shorter proof in second order arithmetic is arbitrarily smaller than any proof in first order. On the other hand, resolution for higher order logic can be simulated step by step in a first order narrowing and resolution method based on deduction modulo, whose paradigm is to separate deduction and computation to make proofs clearer and shorter.

We prove that i + 1-th order arithmetic can be linearly simulated into i-th order arithmetic modulo some confluent and terminating rewrite system. We also show that there exists a speed-up between i-th order arithmetic modulo this system and i-th order arithmetic without modulo. All this allows us to prove that the speed-up conjectured by Gödel does not come from the deductive part of the proofs, but can be expressed as simple computation, therefore justifying the use of deduction modulo as an efficient first order setting simulating higher order.

Keywords

proof theory rewriting higher order logic arithmetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and all That. CUP (1998) Google Scholar
  2. 2.
    Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput. Logic 8 (2007)Google Scholar
  3. 3.
    Brauner, P., Houtmann, C., Kirchner, C.: Principles of superdeduction. In: LICS, IEEE Computer Society, Los Alamitos (to appear, 2007)Google Scholar
  4. 4.
    Burel, G.: Unbounded proof-length speed-up in deduction modulo. Research report (2007), Available at http://hal.inria.fr/inria-00138195
  5. 5.
    Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The Journal of Symbolic Logic 52, 916–927 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buss, S.R.: On Gödel’s theorems on lengths of proofs I: Number of lines and speedup for arithmetics. The Journal of Symbolic Logic 59, 737–756 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus modulo. In: TLCA (to appear, 2007)Google Scholar
  9. 9.
    Curry, H.B., Feys, R., Craig, W.: Combinatory Logic, vol. 1. Elsevier Science Publishers B. V (North-Holland), Amsterdam (1958)MATHGoogle Scholar
  10. 10.
    Dershowitz, N., Kirchner, C.: Abstract Canonical Presentations. Theoretical Computer Science 357, 53–69 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression of higher-order logic. Math. Structures Comput. Sci. 11, 1–25 (2001)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31, 33–72 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68, 1289–1316 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Gentzen, G.: Untersuchungen über das logische Schliessen (The Collected Papers of Gerhard Gentzen as Investigations into Logical Deduction). Translated In: Szabo, M.E. (ed.) Mathematische Zeitschrift, vol. 39, pp. 176–210, 405–431 (1934)Google Scholar
  16. 16.
    Gödel, K.: On the length of proofs. In: Feferman, S., et al. (eds.) Kurt Gödel: Collected Works, vol. 1, pp. 396–399. Oxford University Press, Oxford (1986)Google Scholar
  17. 17.
    Guglielmi, A.: Polynomial size deep-inference proofs instead of exponential size shallow-inference proofs (2004), Available at http://cs.bath.ac.uk/ag/p/AG12.pdf
  18. 18.
    Kirchner, F.: A finite first-order theory of classes (2006), Available at http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/doc/fotc2006.pdf
  19. 19.
    Mostowski, A., Robinson, R.M., Tarski, A.: Undecidable Theories. In: Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam (1953)Google Scholar
  20. 20.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. In: Nipkow, T., Paulson, L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Parikh, R.J.: Some results on the length of proofs. Transactions of the ACM 177, 29–36 (1973)MATHMathSciNetGoogle Scholar
  22. 22.
    The Coq Development Team: The Coq Proof Assistant Reference Manual. INRIA. Version 8.0 (2006), available at http://coq.inria.fr/doc/main.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Guillaume Burel
    • 1
  1. 1.Universitè Henri Poincarè & LORIA, Campus scientifique BP 239 — 54506 Vandœuvre-lès-Nancy CedexFrance

Personalised recommendations