Structure Theorem and Strict Alternation Hierarchy for FO2 on Words

  • P. Weis
  • N. Immerman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4646)

Abstract

It is well-known that every first-order property on words is expressible using at most three variables. The subclass of properties expressible with only two variables is also quite interesting and wellstudied. We prove precise structure theorems that characterize the exact expressive power of first-order logic with two variables on words. Our results apply to FO2[<] and FO2[<; Suc], the latter of which includes the binary successor relation in addition to the linear ordering on string positions.

For both languages, our structuretheorems showexactly whatis expressible using a given quantifier depth, n, and using m blocks of alternating quantifiers, for any m ≤ n. Using these characterizations, we prove, among other results, that there is a strict hierarchy of alternating quantifiers for both languages. The question whether there was such a hierarchy had been completely open. As another consequence of our structural results, we show that satisfiability for FO2[<], which is NEXP-complete in general, becomes NP-complete once we only consider alphabets of a bounded size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, M., Immerman, N.: An n! lower bound on formula size. ACM Transactions on Computational Logic 4(3), 296–314 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brzozowski, J., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. Journal of Computer and System Science 16, 37–55 (1978)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal logic. In: IEEE Symposium on Logic in Computer Science (1997)Google Scholar
  4. 4.
    Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal logic. Information and Computation 179(2), 279–295 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grohe, M., Schweikardt, N.: The succinctness of first-order logic on linear orders. Logical Methods in Computer Science 1, 1–6 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Immerman, N.: Descriptive complexity. Springer, Heidelberg (1999)MATHGoogle Scholar
  7. 7.
    Immerman, N., Kozen, D.: Definability with bounded number of bound variables. Information and Computation 83(2), 121–139 (1989)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kamp, J.A.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (1968)Google Scholar
  9. 9.
    Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. SIAM Journal of Discrete Mathematics 3(2), 255–265 (1990)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    McNaughton, R., Papert, S.A.: Counter-free automata. MIT Press, Cambridge (1971)MATHGoogle Scholar
  11. 11.
    Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory of Computing Systems 30, 1–39 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Schützenberger, M.P.: Sur le produit de concatenation non ambigu. Semigroup Forum 13, 47–75 (1976)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: a new characterization of DA. In Developments in Language Theory (2001) Google Scholar
  14. 14.
    Straubing, H., Thérien, D.: Weakly iterated block products. In: 5th Latin American Theoretical Informatics Conference (2002) Google Scholar
  15. 15.
    Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In Semigroups, Algorithms, Automata and Languages (2001) Google Scholar
  16. 16.
    Tesson, P., Thérien, D.: Algebra meets logic: the case of regular languages. Logical Methods in Computer Science 3, 1–4 (2007)CrossRefGoogle Scholar
  17. 17.
    Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation. In: ACM Symposium on Theory of Computing (1998) Google Scholar
  18. 18.
    Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and System Science 25, 360–376 (1982)MATHCrossRefGoogle Scholar
  19. 19.
    Thomas, W.: An application of the Ehrenfeucht-Fraïssé game in formal language theory. Mémoires de la S.M.F 16, 11–21 (1984)MATHGoogle Scholar
  20. 20.
    Weis, P., and Immerman, N.: Structure theorem and strict alternation hierarchy for FO2 on words (2007), http://www.cs.umass.edu/~immerman/pub/FO2_on_words.pdf
  21. 21.
    Wilke, T.: Personal communication (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • P. Weis
    • 1
  • N. Immerman
    • 1
  1. 1.Department of Computer Science University of Massachusetts, Amherst 140 Governors Drive, Amherst, MA 01003USA

Personalised recommendations