Advertisement

Building Decision Procedures in the Calculus of Inductive Constructions

  • Frédéric Blanqui
  • Jean-Pierre Jouannaud
  • Pierre-Yves Strub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4646)

Abstract

It is commonly agreed that the success of future proof assistants will rely on their ability to incorporate computations within deduction in order to mimic the mathematician when replacing the proof of a proposition P by the proof of an equivalent proposition P’ obtained from P thanks to possibly complex calculations.

In this paper, we investigate a new version of the calculus of inductive constructions which incorporates arbitrary decision procedures into deduction via the conversion rule of the calculus. The novelty of the problem in the context of the calculus of inductive constructions lies in the fact that the computation mechanism varies along proof-checking: goals are sent to the decision procedure together with the set of user hypotheses available from the current context. Our main result shows that this extension of the calculus of constructions does not compromise its main properties: confluence, subject reduction, strong normalization and consistency are all preserved.

Keywords

Calculus of Inductive Constructions Decision procedures Theorem provers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coq-Development-Team: The Coq Proof Assistant Reference Manual - Version 8.0. INRIA, INRIA Rocquencourt, France (2004), http://coq.inria.fr/
  2. 2.
    Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76(2-3), 95–120 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gonthier, G.: The four color theorem in coq. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG-88. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Barras, B.: Auto-validation d’un systéme de preuves avec familles inductives. PhD thesis, Université de Paris VII (1999)Google Scholar
  7. 7.
    Blanqui, F.: Definitions by rewriting in the calculus of constructions. Mathematical Structures in Computer Science, Journal version of LICS 2001. 15(1), 37–92 (2005)Google Scholar
  8. 8.
    Blanqui, F.: Inductive types in the calculus of algebraic constructions. Fundamenta Informaticae, Journal version of TLCA 2003. 65(1-2), 61–86 (2005)Google Scholar
  9. 9.
    Shostak, R.E.: An efficient decision procedure for arithmetic with function symbols. J. of the Association for Computing Machinery 26(2), 351–360 (1979)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Shankar, N.: Little engines of proof. In: Plotkin, G. (ed.) Proceedings of the Seventeenth Annual IEEE Symp. on Logic in Computer Science, LICS 2002, IEEE Computer Society Press, Los Alamitos (2002) (Invited Talk)Google Scholar
  11. 11.
    Corbineau, P.: Démonstration automatique en Théorie des Types. PhD thesis, University of Paris IX (2005)Google Scholar
  12. 12.
    Stehr, M.: The Open Calculus of Constructions: An equational type theory with dependent types for programming, specification, and interactive theorem proving (part I and II). Fundamenta Informaticae (to appear, 2007) Google Scholar
  13. 13.
    Oury, N.: Extensionality in the calculus of constructions. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 278–293. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In: Twenty-five years of constructive type theory. Oxford Logic Guides, vol. 36, pp. 83–111. Oxford University Press, Oxford (1998)Google Scholar
  15. 15.
    Blanqui, F., Jouannaud, J.P., Strub, P.Y.: A Calculus of Congruent Constructions, 2005 (unpublished draft) Google Scholar
  16. 16.
    Barendregt, H.: Lambda calculi with types. Handbook of logic in computer science, vol. 2. Oxford University Press, Oxford (1992)Google Scholar
  17. 17.
    Werner, B.: Une Théorie des Constructions Inductives. PhD thesis, University of Paris VII (1994)Google Scholar
  18. 18.
    Blanqui, F.: Type Theory and Rewriting. PhD thesis, Université de Paris XI, Orsay, France (2001)Google Scholar
  19. 19.
    Barthe, G.: The relevance of proof irrelevance. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational theories. J. Symbolic Computation, Special issue on Unification 8, 51–99 (1989)Google Scholar
  21. 21.
    Baader, F., Schulz, K.: Unification in the union of disjoint equational theories: Combining decision procedures. In: Kapur, D. (ed.) Automated Deduction - CADE-11. LNCS, vol. 607, Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Strub, P.Y.: Type Theory and Decision Procedures. PhD thesis, École Polytechnique, Palaiseau, France (Work in progress)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frédéric Blanqui
    • 1
  • Jean-Pierre Jouannaud
    • 2
  • Pierre-Yves Strub
    • 2
  1. 1.LORIA, Equipe Protheo, Campus Scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex 
  2. 2.LogiCal LIX, UMR CNRS 7161, École Polytechnique, 91128 PlaiseauFrance

Personalised recommendations