Integrating Linear Arithmetic into Superposition Calculus

  • Konstantin Korovin
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4646)

Abstract

We present a method of integrating linear rational arithmetic into superposition calculus for first-order logic. One of our main results is completeness of the resulting calculus under some finiteness assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University press, Cambridge (1998)Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 19–100. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierarchic First-Order Theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Godoy, G., Nieuwenhuis, R.: Superposition with completely built-in Abelian groups. J. Symb. Comput. 37(1), 1–33 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain in the framework of resolution. In: ECAI, pp. 353–357 (2004)Google Scholar
  6. 6.
    Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. Journal version (in preparation)Google Scholar
  7. 7.
    Le Chenadec, P.: Canonical forms in finitely presented algebras. In: Research Notes in Theoretical Computer Science, Wiley, Chichester (1986)Google Scholar
  8. 8.
    Marché, C.: Normalized rewriting: An alternative to rewriting modulo a set of equations. J. Symb. Comput. 21(3), 253–288 (1996)MATHCrossRefGoogle Scholar
  9. 9.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  10. 10.
    Rogers, H.: Theory of recursive functions and effective computability. MIT Press, Cambridge (1988)Google Scholar
  11. 11.
    Rubio, A., Nieuwenhuis, R.: A precedence-based total AC-compatible ordering. In: Kirchner, C. (ed.) Rewriting Techniques and Applications. LNCS, vol. 690, pp. 374–388. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Stuber, J.: Superposition theorem proving for Abelian groups represented as integer modules. Theor. Comput. Sci. 208(1-2), 149–177 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Waldmann, U.: Superposition and chaining for totally ordered divisible Abelian groups. In: International Joint Conference for Automated Reasoning, pp. 226–241 (2001)Google Scholar
  14. 14.
    Waldmann, U.: Cancellative Abelian monoids and related structures in refutational theorem proving (part I, II). Journal of Symbolic Computation 33(6), 777–829 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Andrei Voronkov
    • 1
  1. 1.The University of Manchester 

Personalised recommendations