Detecting Non-trivial Computation in Complex Dynamics

  • Joseph T. Lizier
  • Mikhail Prokopenko
  • Albert Y. Zomaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4648)


We quantify the local information dynamics at each spatiotemporal point in a complex system in terms of each element of computation: information storage, transfer and modification. Our formulation demonstrates that information modification (or non-trivial information processing) events can be locally identified where “the whole is greater than the sum of the parts”. We apply these measures to cellular automata, providing the first quantitative evidence that collisions between particles therein are the dominant information modification events.


Mutual Information Cellular Automaton Information Transfer Cellular Automaton Excess Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordination in a modular robotic system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 548–559. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: All else being equal be empowered. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 744–753. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Computational Biology 2(10), 144 (2006)CrossRefGoogle Scholar
  4. 4.
    Mitchell, M.: Computation in cellular automata: A selected review. In: Gramss, T., Bornholdt, S., Gross, M., Mitchell, M., Pellizzari, T. (eds.) Non-Standard Computation, pp. 95–140. VCH Verlagsgesellschaft, Weinheim (1998)CrossRefGoogle Scholar
  5. 5.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica (Amsterdam) 42D(1-3), 12–37 (1990)Google Scholar
  6. 6.
    Wolfram, S.: Universality and complexity in cellular automata. Physica (Amsterdam) 10D(1-2), 1–35 (1984)Google Scholar
  7. 7.
    Conway, J.H.: What is life? In: Berlekamp, E., Conway, J.H., Guy, R. (eds.) Winning ways for your mathematical plays, vol. 2, Academic Press, New York (1982)Google Scholar
  8. 8.
    Sendiña-Nadal, I., Mihaliuk, E., Wang, J., Pérez-Muñuzuri, V., Showalter, K.: Wave propagation in subexcitable media with periodically modulated excitability. Phys. Rev. Lett. 86(8), 1646 (2001)CrossRefGoogle Scholar
  9. 9.
    Brown, J.A., Tuszynski, J.A.: A review of the ferroelectric model of microtubules. Ferroelectrics 220, 141–156 (1999)CrossRefGoogle Scholar
  10. 10.
    MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  11. 11.
    Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 13(1), 25–54 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Bialek, W., Nemenman, I., Tishby, N.: Complexity through nonextensivity. Physica (Amsterdam) 302A(1-4), 89–99 (2001)Google Scholar
  13. 13.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar
  14. 14.
    Hanson, J.E., Crutchfield, J.P.: The attractor-basin portait of a cellular automaton. J. Stat. Phys. 66, 1415–1462 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Shalizi, C.R., Haslinger, R., Rouquier, J.-B., Klinkner, K.L., Moore, C.: Automatic filters for the detection of coherent structure in spatiotemporal systems. Phys. Rev. E 73(3), 036104 (2006)Google Scholar
  16. 16.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spatiotemporal filter for complex systems. Unpublished (2007)Google Scholar
  17. 17.
    Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform computations: Mechanisms and impediments. Physica (Amsterdam) 75D, 361–391 (1994)Google Scholar
  18. 18.
    Hordijk, W., Shalizi, C.R., Crutchfield, J.P.: Upper bound on the products of particle interactions in cellular automata. Physica (Amsterdam) 154D(3-4), 240–258 (2001)Google Scholar
  19. 19.
    Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Wisconsin-Madison (2001)Google Scholar
  20. 20.
    Wójtowicz, M.: Java cellebration v.1.50. Online Software (2002)Google Scholar
  21. 21.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)CrossRefGoogle Scholar
  22. 22.
    Ay, N., Polani, D.: Information flows in causal networks. Adv. Comp. Sys (to be published, (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joseph T. Lizier
    • 1
    • 2
  • Mikhail Prokopenko
    • 1
  • Albert Y. Zomaya
    • 2
  1. 1.CSIRO Information and Communications Technology Centre, Locked Bag 17, North Ryde, NSW 1670Australia
  2. 2.School of Information Technologies, The University of Sydney, NSW 2006Australia

Personalised recommendations