Advertisement

Emergence of Genetic Coding: An Information-Theoretic Model

  • Mahendra Piraveenan
  • Daniel Polani
  • Mikhail Prokopenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4648)

Abstract

This paper introduces a simple model for evolutionary dynamics approaching the “coding threshold”, where the capacity to symbolically represent nucleic acid sequences emerges in response to a change in environmental conditions. The model evolves a dynamical system, where a conglomerate of primitive cells is coupled with its potential encoding, subjected to specific environmental noise and inaccurate internal processing. The separation between the conglomerate and the encoding is shown to become beneficial in terms of preserving the information within the noisy environment. This selection pressure is captured information-theoretically, as an increase in mutual information shared by the conglomerate across time. The emergence of structure and useful separation inside the coupled system is accompanied by self-organization of internal processing, i.e. an increase in complexity within the evolving system.

Keywords

Mutual Information Genetic Code Internal Processing Environmental Noise Noisy Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woese, C.R.: A new biology for a new century. Microbiology and Molecular Biology Reviews 68(2), 173–186 (2004)CrossRefGoogle Scholar
  2. 2.
    Woese, C.R.: The emergence of genetic organization. In: Ponnamperuma, C. (ed.) Exobiology, pp. 301–341. North-Holland Publishing, Amsterdam (1972)Google Scholar
  3. 3.
    Vetsigian, K., Woese, C.R., Goldenfeld, N.: Collective evolution of the genetic code. Proc. Natl. Acad. Sci. USA 103, 10696–10701 (2006)CrossRefGoogle Scholar
  4. 4.
    Woese, C.R.: The universal ancestor. Proc. Natl. Acad. Sci. USA 95, 6854–6859 (1998)CrossRefGoogle Scholar
  5. 5.
    Woese, C.R., Fox, G.E.: The concept of cellular evolution. J. Mol. Evol. 10, 1–6 (1977)CrossRefGoogle Scholar
  6. 6.
    Barbieri, M.: The organic codes: an introduction to semantic biology. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Woese, C.R.: On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 54, 1546–1552 (1965)CrossRefGoogle Scholar
  8. 8.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: All else being equal be empowered. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 744–753. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Prokopenko, M., Wang, P., Valencia, P., Price, D., Foreman, M., Farmer, A.: Self-organizing hierarchies in sensor and communication networks. Artificial Life 11, 407–426 (2005)CrossRefGoogle Scholar
  10. 10.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Measuring spatiotemporal coordination in a modular robotic system. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial Life X: Proceedings of The 10th International Conference on the Simulation and Synthesis of Living Systems, Bloomington IN, USA, pp. 185–191 (2006)Google Scholar
  11. 11.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordination in a modular robotic system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 558–569. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: Representations of space and time in the maximization of information flow in the perception-action loop. Neural Computation, accepted 17 October 2006 (in press, 2007)Google Scholar
  13. 13.
    Adami, C.: Introduction to Artificial Life. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  14. 14.
    Laughlin, S.B., de Ruyter van Steveninck, R.R., Anderson, J.C.: The metabolic cost of neural information. Nature Neuroscience 1(1), 36–41 (1998)CrossRefGoogle Scholar
  15. 15.
    Zurek, W.H.: Valuable Information. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information. Santa Fe Studies in the Sciences of Complexity, Addison-Wesley, Reading (1990)Google Scholar
  16. 16.
    Prigogine, I.: From Being to Becoming: Time and Complexity in the Physical Sciences. W.H. Freeman & Co, San Francisco (1980)Google Scholar
  17. 17.
    Haken, H.: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology, 3rd edn. Springer, Heidelberg (1983)zbMATHGoogle Scholar
  18. 18.
    Todd, P.M., Miller, G.F.: Exploring adaptive agency ii: Simulating the evolution of associative learning. In: Meyer, J.-A., Wilson, S.W. (eds.) From animals to animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp. 306–315. MIT Press, Cambridge (1991)Google Scholar
  19. 19.
    Eigen, M.: Self-organization of matter and evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mahendra Piraveenan
    • 1
  • Daniel Polani
    • 2
  • Mikhail Prokopenko
    • 1
  1. 1.CSIRO Information and Communication Technology Centre, Locked bag 17, North Ryde, NSW 1670Australia
  2. 2.Department of Computer Science, University of Hertfordshire, Hatfield AL10 9ABUnited Kingdom

Personalised recommendations