Self-organizing Acoustic Categories in Sensor Arrays

  • Ivan Escobar
  • Erika Vilches
  • Edgar E. Vallejo
  • Martin L. Cody
  • Charles E. Taylor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4648)

Abstract

In this paper, we explore the emergence of acoustic categories in sensor arrays. We describe a series experiments on the automatic categorization of species and individual birds using self-organizing maps. Experimental results showed that meaningful acoustic categories can arise as self-organizing processes in sensor arrays. In addition, we discuss how distributed categorization could be used for the emergence of symbolic communication in these platforms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arita, T., Taylor, C.E.: A simple model for the evolution of communication. In: Fogel, L.J., Angeline, P.J., Back, T. (eds.) Evolutionary Programming V, pp. 405–410. MIT Press, Cambridge (1996)Google Scholar
  2. Collier, T.C., Taylor, C.E.: Self-Organization in Sensor Networks. Journal of Parallel and Distributed Computing 64(7), 866–873 (2004)CrossRefGoogle Scholar
  3. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with wireless sensor networks. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP 2001) (2001)Google Scholar
  4. Friedlander, D.S., Phoha, S.: Semantic information fusion for coordinated signal processing in mobile sensor networks. The International Journal of High Performance Computing Applications 16(3), 235–241 (2002)CrossRefGoogle Scholar
  5. Kohonen, T.: Self-organizing maps, 2nd edn. Springer, Heidelberg (1997)MATHGoogle Scholar
  6. Lee, Y., Riggle, J., Collier, T.C., et al.: Adaptive communication among collaborative agents: Preliminary results with symbol grounding. In: Sugisaka, M., Tanaka, H. (eds.) Proceedings of the Eighth International Symposium on Artificial Life and Robotics. Beppu, Oita Japan, Beppu, Oita Japan, Jan. 24-26, pp. 149–155 (2003)Google Scholar
  7. Pfeifer, R., Bongard, J.: How the body shapes the way we think. MIT Press, Cambridge (2007)Google Scholar
  8. Steels, L.: The evolution of communication systems by adaptive agents. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and Multi-Agent Systems. LNCS (LNAI), vol. 2636, pp. 125–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. Taylor, C.E.: From cognition in animals to cognition in superorganisms. In: Bekoff, M., Allen, C., Gurghardt, G. (eds.) The Cognitive Animal. Empirical and Theoretical Perspectives on Animal Cognition, MIT Press, Cambridge (2002)Google Scholar
  10. Teal, T., Taylor, C.E.: Effects of compression on language evolution. Artificial Life 6(2), 129–143 (2000)CrossRefGoogle Scholar
  11. Vallejo, E.E., Taylor, C.E.: The effects of learning on the evolution of Saussurean communication. In: Pollack, J., Bedau, M., Husbands, P., Ikegami, T., Watson, R.A. (eds.) Proceedings from the Ninth International Conference on Artificial Life, MIT Press, Cambridge (2002)Google Scholar
  12. Zhao, F., Guibas, L.: Wireless Sensor Networks. An Information Processing Approach. Morgan Kaufmann Publishers, San Francisco (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ivan Escobar
    • 1
  • Erika Vilches
    • 1
  • Edgar E. Vallejo
    • 1
  • Martin L. Cody
    • 2
  • Charles E. Taylor
    • 2
  1. 1.ITESM-CEM, Computer Science Dept., Atizapan de Zaragoza, Edo. de Mexico, 52926Mexico
  2. 2.UCLA, Dept. of Ecology and Evolutionary Biology, Los Angeles, CA, 90095USA

Personalised recommendations