Advertisement

A Behavior-Based Model of the Hydra, Phylum Cnidaria

  • Malin Aktius
  • Mats Nordahl
  • Tom Ziemke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4648)

Abstract

Behavior-based artificial systems, e.g. mobile robots, are frequently designed using (various degrees and levels of) biology as inspiration, but rarely modeled based on actual quantitative empirical data. This paper presents a data-driven behavior-based model of a simple biological organism, the hydra. Four constituent behaviors were implemented in a simulated animal, and the overall behavior organization was accomplished using a colony-style architecture (CSA). The results indicate that the CSA, using a priority-based behavioral hierarchy suggested in the literature, can be used to model behavioral properties like latency, activation threshold, habituation, and duration of the individual behaviors of the hydra. Limitations of this behavior-based approach are also discussed.

Keywords

behavior-based modeling data-driven modeling hydra colony-style architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Webb, B.: Can robots make good models of biological behavior? Behavioral and Brain Sciences 24, 1033–1050 (2001)Google Scholar
  2. 2.
    Arkin, R.C.: Reactive robotic systems. In: Arbib, M. (ed.) Handbook of Brain Theory and Neural Networks, pp. 793–796. MIT Press, Cambridge (1995)Google Scholar
  3. 3.
    Slater, P.J.: Essentials of Animal Behaviour. Cambridge University Press, Cambridge (1999)Google Scholar
  4. 4.
    Staddon, J.E.R.: Adaptive Dynamics. MIT Press, Cambridge (2001)Google Scholar
  5. 5.
    Arkin, R., Kahled, A., Weitzenfeld, A., Cervantes-Perez, F.: Behavioral models of the praying mantis as a basis for robotic behavior. Journal of Robotics and Autonomous Systems 32(1), 39–60 (2000), citeseer.ist.psu.edu/arkin98behavioral.html CrossRefGoogle Scholar
  6. 6.
    Hickman, C.P., Roberts, L.S., Larson, A., I’Anson, H., Eisenhour, D.S.: Integrated Principles of Zoology, 13th edn. McCraw-Hill, New York (2006)Google Scholar
  7. 7.
    Biomedia associates: http://www.ebiomedia.com (Oct. 13th 2006)Google Scholar
  8. 8.
    Jennings, H.S.: Behavior of the Lower Organisms. Indiana University Press, Bloomington (1962)Google Scholar
  9. 9.
    Wagner, G.: On some movements and reactions of Hydra. Quarterly Journal of Microscopical Science 48, 585–622 (1905)Google Scholar
  10. 10.
    Lenhoff, H.M.: Behavior, hormones, and Hydra. Science 161, 434–442 (1968)CrossRefGoogle Scholar
  11. 11.
    Passano, L.M., McCullough, C.B.: Co-ordinating systems and behavior in Hydra, I. pacemaker system of the periodic contractions. Journal of Experimental Biology 41, 643–664 (1964)Google Scholar
  12. 12.
    Rushforth, N.B., Burnett, A., Maynard, R.: Behavior in Hydra: Contraction responses of Hydra Pirardi to mechanical and light stimulation. Science 139, 760–761 (1963)Google Scholar
  13. 13.
    Singer, R., Rushforth, N.B., Burnett, A.: The photodynamic action of light on Hydra. Journal of Experimental Zoology 54(2), 169–173 (1963)CrossRefGoogle Scholar
  14. 14.
    Aktius, M.: Modeling hydra behavior using methods founded in behavior-based robotics. Master’s thesis, Chalmers University of Technology. Department of Applied Mechanics, Göteborg, Sweden, Report No. 2007:17 (2007)Google Scholar
  15. 15.
    McFarland, D., Bösser, T.: Intelligent Behavior in Animals and Robots. MIT Press, Cambridge (1993)Google Scholar
  16. 16.
    Connell, J.: A colony architecture for an artificial creature. Technical Report 1151, MIT Artificial Intelligence Laboratory (June 1989)Google Scholar
  17. 17.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation RA-2(1), 14–23 (1986)Google Scholar
  18. 18.
    Harper, C.J., Winfield, A.F.T.: A methodology for provably stable behaviour-based intelligent control. Robotics and Autonomous Systems 54, 52–73 (2006)CrossRefGoogle Scholar
  19. 19.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)Google Scholar
  20. 20.
    Biró, Z., Ziemke, T.: Evolution of visually-guided approach behaviour in recurrent artificial neural network robot controllers. In: From animals to animats 5 - Proceedings of the Fifth International Conference on the Simulation of Adaptive Behavior, pp. 73–76. MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Malin Aktius
    • 1
  • Mats Nordahl
    • 2
  • Tom Ziemke
    • 1
  1. 1.University of Skövde, School of Humanities and Informatics, SE-541 28 SkövdeSweden
  2. 2.Department of Applied Information Technology, Göteborg University and Chalmers University of Technology, SE-417 56 GöteborgSweden

Personalised recommendations