Advertisement

Interactive Storytelling with Literary Feelings

  • David Pizzi
  • Fred Charles
  • Jean-Luc Lugrin
  • Marc Cavazza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4738)

Abstract

In this paper, we describe the integration of Natural Language Processing (NLP) within an emotional planner to support Interactive Storytelling. Our emotional planner is based on a standard HSP planner, whose originality is drawn from altering the agents’ beliefs and emotional states. Each character is driven by its own planner, while characters are able to operate on their reciprocal feelings thus affecting each other. Our baseline story is constituted by a classic XIXth century French novel from Gustave Flaubert in which characters feelings play a dominant role. This approach benefits from the fact that Flaubert has described a specific ontology for his characters feelings. The objective of NLP should be to uncover from natural language utterances the same kind of affective elements, which requires an integration between NLP and the planning component at the level of semantic content. This research is illustrated with examples from a first fully integrated prototype comprising NLP, emotional planning and real-time 3D animation.

Keywords

Aesthetic computing literary analysis interactive storytelling emotional NLP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aylett, R., Louchart, S., Dias, J., Paiva, A., Vala, M.: FearNot! - An Experiment in Emergent Narrative. In: Panayiotopoulos, T., Gratch, J., Aylett, R., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 305–316. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Basili, R., Marocco, P.: A geometrical approach to literary text analysis. In: Proceedings of the LREC 2006 Workshop Towards Computational models of Literary Analysis, Genova, Italy (May 22, 2006)Google Scholar
  3. 3.
    Basili, R.: Toward Computational Models of Literary Analysis. In: Proceedings of the LREC 2006 workshop, Genova, Italy (2006)Google Scholar
  4. 4.
    Bonet, B., Geffner, H.: Planning as Heuristic Search: New Results. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 360–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bonet, B., Geffner, H.: Planning as Heuristic Search. Artificial Intelligence Special Issue on Heuristic Search 129(1), 5–33 (2001)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cavazza, M., Charles, F., Mead, S.J.: Interacting with Virtual Characters in Interactive Storytelling. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and Multi-Agent Systems. LNCS (LNAI), vol. 2636, pp. 318–325. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Cavazza, M., Martin, O., Charles, F., Mead, S.J., Marichal, X.: Interacting with Virtual Agents in Interactive Storytelling. In: International Conference on Intelligent Virtual Agents (2003)Google Scholar
  8. 8.
    Cavazza, M.: An Integrated Parser for TFG with Explicit Tree Typing. In: Proceedings of the Fourth TAG+ Workshop, University of Pennsylvania (1998)Google Scholar
  9. 9.
    Cavazza, M., Martin, O., Charles, F., Mead, S.J., Marichal, X., Nandi, A.: Multi-modal Acting in Mixed Reality Interactive Storytelling. IEEE Multimedia 11(3) (July-September 2004)Google Scholar
  10. 10.
    Charles, F., Cavazza, M.: Exploring the Scalability of Character-based Storytelling. In: AAMAS 2004, pp. 872–879. ACM Press, New York (2004)Google Scholar
  11. 11.
    Cheong, Y.-G., Young, R.M.: A Computational Model of Narrative Generation for Suspense. In: The AAAI 2006 Workshop on Computational Aesthetics (2006)Google Scholar
  12. 12.
    Christian, D.B., Young, R.M.: Comparing Cognitive and Computational Models of Narrative Structure. In: AAAI 2004. Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 385–390 (2004)Google Scholar
  13. 13.
    Flaubert, G.: Madame Bovary (in French). La revue de Paris (ed.) France (1856)Google Scholar
  14. 14.
    Gliozzo, A.M.: Semantic Domains and Linguistic Theory. In: Proceedings of the LREC 2006 workshop Toward Computational Models of Literary Analysis, Genova, Italy (2006)Google Scholar
  15. 15.
    Gratch, J., Marsella, S.: Tears and fears: Modeling emotions and emotional behaviors in synthetic agents. In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 278–285 (2001)Google Scholar
  16. 16.
    Gratch, J.: Why you should buy an emotional planner. In: Proceedings of the Autonomous Agents, Workshop on Emotion-based Agent Architectures, EBAA 1999 (1999)Google Scholar
  17. 17.
    Gratch, J., Marsella, S., Mao, W.: Towards a Validated Model of Emotional Intelligence. In: AAAI 2006. Twenty-First National Conference on Artificial Intelligence, Boston, MA (2006)Google Scholar
  18. 18.
    Joshi, A.K., Schabes, Y.: Tree-adjoining grammars and lexicalized grammars. In: Nivat, M., Podelski, A. (eds.) Tree Automata and Languages, Elsevier Science, Amsterdam (1992)Google Scholar
  19. 19.
    Korf, R.E.: Real-time heuristic search. Artificial Intelligence 42(2-3), 189–211 (1990)zbMATHCrossRefGoogle Scholar
  20. 20.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review 104(2), 211–240 (1997)CrossRefGoogle Scholar
  21. 21.
    Leclerc, Y. (ed.): Plans et Scenarios de Madame Bovary (in French), CNRS edn., France (1995)Google Scholar
  22. 22.
    Liu, Y., Koenig, S., Furcy, D.: Speeding Up the Calculation of Heuristics for Heuristic Search-Based Planning. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, AAAI 2002, pp. 484–491 (2002)Google Scholar
  23. 23.
    Liu, H., Mihalcea, R.: Computational Aesthetics: Artificial Intelligence Approaches to Beauty and Happiness. In: AAAI Workshop. Technical Report WS-06-04. American Association for Artificial Intelligence, Menlo Park, California, pp. 8–15 (2006)Google Scholar
  24. 24.
    Magerko, B., Laird, J.E., Assanie, M., Kerfoot, A., Stokes, D.: AI Characters and Directors for Interactive Computer Games. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 877–883 (2004)Google Scholar
  25. 25.
    Mateas, M., Stern, A.: Natural Language Understanding in Façade: Surface-Text Processing. In: Göbel, S., Spierling, U., Hoffmann, A., Iurgel, I., Schneider, O., Dechau, J., Feix, A. (eds.) TIDSE 2004. LNCS, vol. 3105, pp. 3–13. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Mehta, M., Dow, S., Mateas, M., MacIntyre, B.: Evaluating a Conversation-Centered Interactive drama. In: AAMAS 2007. Proceedings of the Sixth International Conference on Autonomous Agents and Multiagent Systems, Honolulu, Hawaii, USA (2007)Google Scholar
  27. 27.
    Rastier, F.: La sémantique des thèmes - ou le voyage sentimental (in French). In: Rastier, F. (ed.), L’analyse thématique des données textuelles. L’exemple des sentiments. Didier, Paris, pp. 223–249 (1995)Google Scholar
  28. 28.
    Rastier, F., Cavazza, M., Abeille, A.: Semantics for Descriptions: From Linguistics to Computer Science. CSLI Lecture Notes 138, University of Chicago Press (2001)Google Scholar
  29. 29.
    Riedl, M.O., Young, R.M.: An Intent-Driven Planner for Multi-Agent Story Generation. In: AAMAS 2004, pp. 186–193. ACM, New York (2004)Google Scholar
  30. 30.
    Riedl, M.O., Young, R.M.: From Linear Story Generation to Branching Story Graphs. IEEE Computer Graphics and Applications 26(3), 23–31 (2006)CrossRefGoogle Scholar
  31. 31.
    Swartout, W., Gratch, J., Hill, R., Hovy, E., Marsella, S., Rickel, J., Traum, D.: Toward Virtual Humans. AI Magazine 27(1) (2006)Google Scholar
  32. 32.
    Uzuner, Ö., Katz, B.: Capturing Expression Using Linguistic Information. In: AAAI 2005. Proceedings of the Twentieth National Conference on Artificial Intelligence, pp. 1124–1130 (2005)Google Scholar
  33. 33.
    Valitutti, A., Strapparava, C., Stock, O.: Lexical Resources and Semantic Similarity for Affective Evaluative Expressions Generation. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 474–481. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David Pizzi
    • 1
  • Fred Charles
    • 1
  • Jean-Luc Lugrin
    • 1
  • Marc Cavazza
    • 1
  1. 1.School of Computing, University of Teesside TS1 3BAUnited Kingdom

Personalised recommendations