Modulatory Influence of Motivations on a Schema-Based Architecture: A Simulative Study

  • Giovanni Pezzulo
  • Gianguglielmo Calvi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4738)


We analyze the role of motivations in living organisms, and the nature of their influences on behavior with the aim to propose a design methodology for schema-based agent architectures. We propose that motivations have a modulatory influence on behavior, and in our design methodology they regulate the allocation of resources to the sensorimotor system and schemas. We describe an agent architecture incorporating this principle and we highlight its performance in a simulative study.


Motivational System Forward Model Inverse Model Motor Command Motor Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib, M.: Schema theory. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelligence, 2nd edn., vol. 2, pp. 1427–1443. Wiley, Chichester, UK (1992)Google Scholar
  2. 2.
    Arkin, R., Ali, K., Weitzenfeld, A., Cervantes-Pérez., F.: Behavioral models of the praying mantis as a basis for robotic behavior. Robotics and Autonomous Systems. 32(1), 39–60 (2000)CrossRefGoogle Scholar
  3. 3.
    Avila-Garcia, O., Canamero, L.: Hormonal modulation of perception in motivation-based action selection architectures. In: Canamero, L., Evans, D. (eds.) Agents that Want and Like: Motivational and Emotional Roots of Cognition and Action. Workshop of the AISB 2005 Convention (2005)Google Scholar
  4. 4.
    Damasio, A.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harcourt (2003)Google Scholar
  5. 5.
    Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Advance in neural information processing systems, vol. 2, pp. 524–532. Morgan Kaufmann Publishers Inc., Seattle, Washington, USA (1990)Google Scholar
  6. 6.
    Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar
  7. 7.
    Minsky, M.: The emotion machine (in preparation)Google Scholar
  8. 8.
    Niv, Y., Joel, D., Dayan, P.: A normative perspective on motivation. Trends in Cognitive Science 8, 375–381 (2006)CrossRefGoogle Scholar
  9. 9.
    Parisi, D.: Internal robotics. Connection Science 16(14), 325–338 (2004)CrossRefGoogle Scholar
  10. 10.
    Pezzulo, G., Calvi, G.: A schema based model of the praying mantis. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 211–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Pezzulo, G., Calvi, G.: Designing modular architectures in the framework akira. Multiagent and Grid Systems 3(1), 65–86 (2007)Google Scholar
  12. 12.
    Pezzulo, G., Calvi, G.: Schema-based design and the akira schema language: An overview. In: Butz, M., et al. (eds.) Anticipatory Behavior in Adaptive Learning Systems: Advances in Anticipatory Processing. LNCS (LNAI), vol. 4520, Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Snaith, M., Holland, O.: An investigation of two mediation strategies suitable for behavioural control in animals and animats. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 255–262. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Tyrrell, T.: Computational Mechanisms for Action Selection. PhD thesis, University of Edinburgh (1993)Google Scholar
  15. 15.
    Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Giovanni Pezzulo
    • 1
  • Gianguglielmo Calvi
    • 1
  1. 1.ISTC-CNR, Via S. Martino della Battaglia, 44 - 00185 RomeItaly

Personalised recommendations