Basing Artificial Emotion on Process and Resource Management

  • Stefan Rank
  • Paolo Petta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4738)

Abstract

Executable computational process models of emotion are based on specific sets of modelling primitives. Motivated by the requirements of a specific scenario and concepts used by emotion theories, we propose as building blocks explicitly bounded resources and concurrent processes acquiring and using them. Our approach is intended for the incremental modelling of a growing collection of emotional episodes, with a clear delineation of technically necessary simplifications of the natural phenomena. An episode of disgust is used to discuss the approach, which is realised using real-time cooperative microthreading technology.

Keywords

Affective agent architectures appraisal theories computational modelling design criteria disgust embodiment real-time systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arzi-Gonczarowski, Z.: From Embodiments Back to their Models: An Affective Abstraction. In: The Intersection of Cognitive Science and Robotics: From Interfaces to Intelligence, 76–81 (2004)Google Scholar
  2. 2.
    Aylett, R.: Behavioural Virtual Agents. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 1–12. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bickhard, M.H.: Motivation and Emotion: An Interactive Process Model. Department of Philosophy, Lehigh University, Bethlehem PA USA [2007-04-19] (1999), http://www.lehigh.edu/~mhb0/motemotion.html
  4. 4.
    Chrisley, R., Ziemke, T.: Embodiment. In: Nadel, L. (ed.) Encyclopedia of Cognitive Science, pp. 1102–1108. Nature Publishing Group, Macmillan, London (2003)Google Scholar
  5. 5.
    Cleeremans, A., French, R.M.: From Chicken Squawking To Cognition: Levels of Description and the Computational Approach in Psychology. Psychologica Belgica 36(1-2), 5–29 (1996)Google Scholar
  6. 6.
    Ellsworth, P.C., Scherer, K.R.: Appraisal Processes in Emotion. In: Davidson, R.J., Scherer, K.R., Goldsmith, H.H. (eds.) Handbook of Affective Sciences, pp. 572–595. Oxford University Press, Oxford/New York (2003)Google Scholar
  7. 7.
    Frijda, N.H.: The Emotions. Cambridge University Press, Editions de la Maison des Sciences de l’Homme, Paris (1986)Google Scholar
  8. 8.
    Frijda, N.H.: The Laws of Emotion. Lawrence Erlbaum Associates, Mahwah NJ USA/London UK EU (2007)Google Scholar
  9. 9.
    Granger, R.: Engines of the Brain: The Computational Instruction Set of Human Cognition. In: Cassimatis, N., et al. (eds.) Achieving Human-Level Intelligence through Integrated Systems and Research, AI Magazine 27(2), 15–32 (2006)Google Scholar
  10. 10.
    Gratch, J., Marsella, S., Mao, W.: Towards a Validated Model of ”Emotional Intelligence”. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence, pp. 1613–1616. AAAI Press, Menlo Park CA USA (2006)Google Scholar
  11. 11.
    Gratch, J., Marsella, S., Petta, P. (eds.) Agent Construction and Emotion: Modelling the Cognitive Antecedents and Consequences of Emotion. In: Trappl R. (ed.): Cybernetics and Systems 2006. Austrian Soc. for Cybernetic Studies, Vienna (2006)Google Scholar
  12. 12.
    Gratch, J., Marsella, S.: A Domain-independent Framework for Modeling Emotion. Cognitive Systems Research 5(4), 269–306 (2004)CrossRefGoogle Scholar
  13. 13.
    Gratch, J., Marsella, S.: The Architectural Role of Emotion in Cognitive Systems. In: Gray, W.D. (ed.) Integrated Models of Cognitive Systems, pp. 230–242. Oxford University Press, New York (2007)Google Scholar
  14. 14.
    Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27(3), 377–396 (2004)Google Scholar
  15. 15.
    Lawrence, A.D., Calder, A.J.: Homologizing Human Emotions. In: Evans, D., Cruse, P. (eds.) Emotions, Evolution and Rationality, pp. 15–50. Oxford University Press, Oxford (2004)Google Scholar
  16. 16.
    Marinier, R.P., Laird, J.E.: A Cognitive Architecture Theory of Comprehension and Appraisal. In: [11], pp. 589–594 (2006)Google Scholar
  17. 17.
    Marsella, S., Gratch, J.: EMA: A Computational Model of Appraisal Dynamics. In: [11], pp. 601–606 (2006)Google Scholar
  18. 18.
    Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. Simon & Schuster, New York (2006)Google Scholar
  19. 19.
    Parkinson B.: Putting Appraisal in Context. In: [26], pp. 173–186 (2001)Google Scholar
  20. 20.
    Petta, P.: The Role of Emotions in a Tractable Architecture for Situated Cognizers. In: Trappl, R. (ed.) Emotions in Humans and Artifacts, pp. 251–288. MIT Press, Cambridge, MA, USA/ London, UK, EU (2003)Google Scholar
  21. 21.
    Rank, S.: Toward Reusable Roleplayers Using an Appraisal-based Architecture. Payr, S. (ed.) Educational Agents and (e-)Learning, Applied Artificial Intelligence 19(3-4), 313–340 (2005)Google Scholar
  22. 22.
    Rank, S., Petta, P.: Appraisal for a Character-based Story-World. In: Panayiotopoulos, T., et al. (eds.) Intelligent Virtual Agents. 5th International Working Conference, Kos Greece EU, pp. 495–496. Springer, Berlin (2005)CrossRefGoogle Scholar
  23. 23.
    Rank, S., Petta, P.: Comparability is Key to Assess Affective Architectures. In: [11], 643–648 (2006)Google Scholar
  24. 24.
    Rozin, P., Haidt, J., McCauley, C.R.: Disgust. In: Lewis, M., Haviland, J.M. (eds.) Handbook of Emotions, 2nd edn., pp. 637–653. Guilford Press, New York (2000)Google Scholar
  25. 25.
    Scherer, K.R.: Appraisal considered as a process of multilevel sequential checking. In: [26], 92–120 (2001)Google Scholar
  26. 26.
    Scherer, K.R., Schorr, A., Johnstone, T. (eds.): Appraisal Processes in Emotion: Theory, Methods, Research. Oxford University Press, Oxford/New York (2001)Google Scholar
  27. 27.
    Scheutz, M., Andronache, V.: The APOC Framework for the Comparison of Agent Architectures. In: Jones, R.M (ed.) Intelligent Agent Architectures: Combining the Strengths of Software Engineering and Cognitive Systems: Papers from the 2004 AAAI Workshop, pp. 66–73. AAAI Press, Menlo Park CA USA (2004)Google Scholar
  28. 28.
    Simpson, J., Carter, S., Anthony, S.H., Overton, P.G.: Is Disgust a Homogeneous Emotion? Motivation and Emotion 30(1), 31–41 (2006)CrossRefGoogle Scholar
  29. 29.
    Singh, P.: EM-ONE: An Architecture for Reflective Commonsense Thinking. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA USA, PhD Thesis (2005)Google Scholar
  30. 30.
    Sloman, A.: What Are Emotion Theories About? In: Hudlicka, E., Cañamero, L. (eds.) Architectures for Modeling Emotion: Cross-Disciplinary Foundations, Papers from the 2004 AAAI Spring Symposium, March 22-24, pp. 128–134. AAAI Press, Menlo Park CA USA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stefan Rank
    • 1
  • Paolo Petta
    • 1
    • 2
  1. 1.Austrian Research Institute for Artificial Intelligence , Freyung 6/6, A-1010 Vienna, Austria  
  2. 2.Institute of Medical Cybernetics and Artificial Intelligence , Medical University of Vienna , Freyung 6/2, A-1010 Vienna, Austria  

Personalised recommendations