Facial Activation Control Effect (FACE)

  • Toni Vanhala
  • Veikko Surakka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4738)


The present study was the first in line of a series of experiments investigating the possibilities of using voluntarily produced physiological signals in computer-assisted therapy. The current aim was to find out whether computer-guided voluntary facial activations have an effect on autonomous nervous system activity. Twenty-seven participants performed a series of voluntary facial muscle activations, while wireless electrocardiography and subjective experiences were recorded. Each task consisted of activating either the corrugator supercilii muscle (activated when frowning) or the zygomaticus major muscle (activated when smiling) at one of three activation intensities (i.e. low, medium, and high). Our results showed a voluntary facial activation control effect (FACE) on psychological (i.e. level of experience) and physiological activity. Different muscle activations produced both task-specific emotional experiences and significant changes in heart rate and heart rate variability. Low intensity activations of both muscles were the most effective, easy to perform, and pleasant. We conclude that the FACE can clearly open the route for regulating involuntary physiological processes.


Electrocardiography Electromyography Heart rate patterns Physiological computing Wireless monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiederhold, B.K., Bullinger, A.H.: Virtual reality exposure for phobias, panic disorder, and posttraumatic disorder: A brief sampling of the literature. In: Proceedings of HCII 2005, Lawrence Erlbaum Associates CD-ROM (2005)Google Scholar
  2. 2.
    Weiten, W.: Psychology: Themes and variations, 7th edn. Thomson Higher Education (2007)Google Scholar
  3. 3.
    Wiederhold, B.K., Wiederhold, M.D.: Three-year follow-up for virtual reality exposure for fear of flying. CyberPsychology and Behavior 6, 441–445 (2003)CrossRefGoogle Scholar
  4. 4.
    Allanson, J., Fairclough, S.H.: A research agenda for physiological computing. Interacting with Computers 16, 857–878 (2004)CrossRefGoogle Scholar
  5. 5.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  6. 6.
    Wilhelm, F.H., Pfaltzl, M.C., Grossman, P.: Continuous electronic data capture of physiology, behavior and experience in real life: towards ecological assessment of emotion. Interacting with Computers 18, 171–186 (2006)CrossRefGoogle Scholar
  7. 7.
    Anttonen, J., Surakka, V.: Emotions and heart rate while sitting on a chair. In: Proceedings of CHI 2005, pp. 491–499 (2005)Google Scholar
  8. 8.
    Larsen, J.T., Norris, C.J., Cacioppo, J.T.: Effects of positive and negative affect on elctromyographic activity over the zygomaticus major and corrugator supercilii. Psychophysiology 40, 776–785 (2003)CrossRefGoogle Scholar
  9. 9.
    Bradley, M.M.: Emotion and Motivation. In: Handbook of Psychophysiology, 2nd edn., pp. 602–642. Cambridge University Press, Cambridge (2000)Google Scholar
  10. 10.
    Schieber, M.H.: Constraints on somatotopic organization in the primary motor cortex. Journal of Neurophysiology 86, 2125–2143 (2001)Google Scholar
  11. 11.
    Partala, T., Surakka, V., Vanhala, T.: Real-time estimation of emotional experiences from facial expressions. Interacting with Computers 18, 208–226 (2006)CrossRefGoogle Scholar
  12. 12.
    Partala, T., Surakka, V., Vanhala, T.: Person-independent estimation of emotional experiences from facial expressions. In: Proceedings of IUI 2005, pp. 246–248. ACM Press, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1175–1191 (2001)CrossRefGoogle Scholar
  14. 14.
    Levenson, R.W., Ekman, P.: Difficulty does not account for emotion-specific heart rate changes in the directed facial action task. Psychophysiology 39, 397–405 (2002)CrossRefGoogle Scholar
  15. 15.
    Ward, R.D., Marsden, P.H.: Physiological responses to different web page designs. International Journal of Human-Computer Studies 59, 199–212 (2003)CrossRefGoogle Scholar
  16. 16.
    Vehkaoja, A., Lekkala, J.: Wearable wireless biopotential measurement device. In: Proceedings of the IEEE EMBS 2004, pp. 2177–2179. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Teller, A.: A platform for wearable physiological computing. Interacting with Computers 16, 917–937 (2004)CrossRefGoogle Scholar
  18. 18.
    Jennings, J.R., Berg, W.K., Hutcheson, J.S., Obrist, P., Porges, S., Turpin, G.: Publication guidelines for heart rate studies in man. Psychophysiology 18, 226–231 (1981)CrossRefGoogle Scholar
  19. 19.
    Brownley, K.A., Hurwitz, B.E., Schneiderman, N.: Cardiovascular psychophysiology. In: Handbook of Psychophysiology, 2nd edn., pp. 224–264. Cambridge University Press, Cambridge (2000)Google Scholar
  20. 20.
    Matthews, G., Wells, A.: The cognitive science of attention and memory. In: Handbook of Cognition and Emotion, pp. 171–192. Wiley, Chichester (1999)CrossRefGoogle Scholar
  21. 21.
    Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492 (1991)Google Scholar
  22. 22.
    Weber, E.J.M., Van der Molen, M.W., Molenaar, P.C.M.: Heart rate and sustained attention during childhood: age changes in anticipatory heart rate, primary bradycardia, and respiratory sinus arrythmia. Psychophysiology 31, 164–174 (1994)CrossRefGoogle Scholar
  23. 23.
    Rainville, P., Bechara, A., Naqvi, N., Damasio, A.R.: Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology 61, 5–18 (2006)CrossRefGoogle Scholar
  24. 24.
    Surakka, V., Illi, M., Isokoski, P.: Gazing and frowning as a new technique for human-computer interaction. ACM Transactions on Applied Perception 1, 40–56 (2004)CrossRefGoogle Scholar
  25. 25.
    Birbaumer, N.: Breaking the silence: Brain-computer interfaces (BCI) for communication and control. Psychophysiology 43, 517–532 (2006)CrossRefGoogle Scholar
  26. 26.
    Coan, J.A., Allen, J.J.B., Harmon-Jones, E.: Voluntary facial expression and hemispheric asymmetry over the frontal cortex. Psychophysiology 38, 912–925 (2001)CrossRefGoogle Scholar
  27. 27.
    Puurtinen, M., Hyttinen, J., Malmivuo, J.: Optimizing bipolar electrode location for wireless ECG measurement – analysis of ECG signal strength and deviation between individuals. International Journal of Bioelectromagnetism 1, 236–239 (2005)Google Scholar
  28. 28.
    Fridlund, A.J., Cacioppo, J.T.: Guidelines for human electromyographic research. Psychophysiology 23, 567–589 (1986)CrossRefGoogle Scholar
  29. 29.
    PhysioNet: Physiotoolkit, 03.20.2007 (2003),
  30. 30.
    Laguna, P., Moody, G.B., Mark, R.G.: Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Transactions on Biomedical Engineering 45, 698–715 (1998)CrossRefGoogle Scholar
  31. 31.
    Öhman, A., Hamm, A., Hugdahl, K.: Cognition and the Autonomic Nervous System: Orienting, Anticipation, and Conditioning. In: Handbook of Psychophysiology, 2nd edn., pp. 533–575. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Toni Vanhala
    • 1
  • Veikko Surakka
    • 1
    • 2
  1. 1.Research Group for Emotions, Sociality, and Computing, Tampere Unit for Human-Computer Interaction, FIN-33014 University of TampereFinland
  2. 2.Tampere University Hospital, Department of Clinical Neurophysiology, P.O. Box 2000, FIN-33521 TampereFinland

Personalised recommendations