Advertisement

Lexical Affect Sensing: Are Affect Dictionaries Necessary to Analyze Affect?

  • Alexander Osherenko
  • Elisabeth André
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4738)

Abstract

Recently, there has been considerable interest in the automated recognition of affect from written and spoken language. In this paper, we investigate how information on a speaker’s affect may be inferred from lexical features using statistical methods. Dictionaries of affect offer great promise to affect sensing since they contain information on the affective qualities of single words or phrases that may be employed to estimate the emotional tone of the corresponding dialogue turn. We investigate to what extent such information may be extracted from general-purpose dictionaries in comparison to specialized dictionaries of affect. In addition, we report on results obtained for a dictionary that was tailored to our corpus.

Keywords

Lexical Modality Lexical Affect Sensing Emotion Detection Spontaneous Dialogues Affect Dictionaries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coltheart, M.: The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology 33A, 497–505 (1981)Google Scholar
  2. 2.
    Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., Schröder, M.: ’FEELTRACE’: An instrument for recording perceived emotion in real time. In: Proceedings of the ISCA Workshop on Speech and Emotion, Northern Ireland, pp. 19–24 (2000)Google Scholar
  3. 3.
    Hirschberg, J., Benus, S., Brenier, J.M., Enos, F., Friedman, S., Gilman, S., Girand, C., Graciarena, M., Kathol, A., Michaelis, L., Pellom, B., Shriberg, E., Stolcke, A.: Distinguishing Deceptive from Non-Deceptive Speech (2005), URL: http://www.speech.cs.cmu.edu/awb/jss/IS051364.PDF
  4. 4.
    Kilgarriff, A.: Putting Frequencies in the Dictionary. International Journal of Lexicography 10(2), 135–155 (1997)CrossRefGoogle Scholar
  5. 5.
    Kollias, S.: ERMIS Project (2007), URL: http://www.image.ntua.gr/ermis/
  6. 6.
    Langenmayr, A.: Sprachpsychologie. Hogrefe, Göttingen (1997)Google Scholar
  7. 7.
    Mairesse, F., Walker, M.: Words Mark the Nerds: Computational Models of Personality Recognition through Language. In: Proceedings of the 28th Annual Conference of the Cognitive Science Society (CogSci 2006), Vancouver, pp. 543–548 (July 2006)Google Scholar
  8. 8.
    Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language processing. In: Proceedings of the 2nd international Conference on Knowledge Capture, Sanibel Island, FL, USA, October 23 - 25. K-CAP 2003, ACM Press, New York (2003)Google Scholar
  9. 9.
    Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Analysis of Affect Expressed through the Evolving Language of Online Communication. In: Proc. of IUI 2007, pp. 278–281. ACM Press, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count (LIWC): LIWC2001. Erlbaum Publishers, Mahwah, NJ (2001)Google Scholar
  11. 11.
    Pennebaker, J.W., Mehl, M.R., Niederhoffer, K.: Psychological aspects of natural language use: Our words, our selves. Annual Review of Psychology 54, 547–577 (2003)CrossRefGoogle Scholar
  12. 12.
    Riloff, Ellen, Patwardhan, Siddharth, Wiebe, Janyce.: Feature Subsumption for Opinion Analysis. In: Proceedings of EMNLP 2006, the Conference on Empirical Methods in Natural Language Processing. Sydney, AUS: Association for Computational Linguistics, pp. 440–448 (2006)Google Scholar
  13. 13.
    Shaikh, S., Islam, Md.T., Ishizuka, M., Prendinger, H.: Implementation of Affect Sensitive News Agent (ASNA) for affective classification of news summary. In: Proceedings International Conference on Computer and Information Technology (ICCIT 2006), Dhaka, Bangladesh (2006)Google Scholar
  14. 14.
    Valitutti, A., Strapparava, C., Stock, O.: Developing Affective Lexical Resources. PsychNology Journal 2(1), 61–83 (2004)Google Scholar
  15. 15.
    Weintraub, W.: Verbal Behavior in Everyday Life. Springer, Heidelberg (1989)Google Scholar
  16. 16.
    Whissell, C.M.: The dictionary of affect in language. In: Plutchik, R., Kellerman, H. (eds.) Emotion: Theory, Research, and Experience, pp. 113–131. Academic Press, New York (1989)Google Scholar
  17. 17.
    Wiebe, J., Wilson, T., Bruce, R., Bell, M., Martin, M.: Learning Subjective Language. Computational linguistics 30(3), 277–308 (2004)CrossRefGoogle Scholar
  18. 18.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  19. 19.
    Zhang, L., Barnden, J.A., Hendley, R.J., Wallington, A.M.: Exploitation in Affect Detection in Open-Ended Improvisational Text. In: Proceedings of the Workshop on Sentiment and Subjectivity in Text, ACM Press, New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alexander Osherenko
    • 1
  • Elisabeth André
    • 1
  1. 1.Multimedia Concepts and Applications, Faculty of Applied Informatics, University of AugsburgGermany

Personalised recommendations