Probabilistic Techniques in Algorithmic Game Theory

(SAGA 2007 Invited Paper)
  • Spyros C. Kontogiannis
  • Paul G. Spirakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4665)

Abstract

We consider applications of probabilistic techniques in the framework of algorithmic game theory. We focus on three distinct case studies: (i) The exploitation of the probabilistic method to demonstrate the existence of approximate Nash equilibria of logarithmic support sizes in bimatrix games; (ii) the analysis of the statistical conflict that mixed strategies cause in network congestion games; (iii) the effect of coalitions in the quality of congestion games on parallel links.

Keywords

Game Theory Atomic Congestion Games Coalitions Convergence to Equilibria Price of Anarchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Applications 199, 339–355 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proc. of the 37th ACM Symp. on Th. of Comp (STOC 2005), pp. 57–66. ACM Press, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley and Sons, Inc, Chichester (1993)MATHGoogle Scholar
  4. 4.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)Google Scholar
  5. 5.
    Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc. of the 47th IEEE Symp. on Found. of Comp. Sci (FOCS 2006), pp. 261–272. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and smoothed complexity. In: Proc. of the 47th IEEE Symp. on Found. of Comp. Sci (FOCS 2006), pp. 603–612. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proc. of the 37th ACM Symp. on Th. of Comp (STOC 2005), pp. 67–73. ACM Press, New York (2005)CrossRefGoogle Scholar
  8. 8.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Dorn, W.S.: Duality in quadratic programming. Quarterly of Applied Mathematics 18(2), 155–162 (1960)MATHMathSciNetGoogle Scholar
  10. 10.
    Dubhashi, D., Ranjan, D.: Balls and bins: A study in negative dependence. Random Structures & Algorithms 13(2), 99–124 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proc. of the 36th ACM Symp. on Th. of Comp (STOC 2004), ACM Press, New York (2004)Google Scholar
  12. 12.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 226–239. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in network congestion games: Pure equilibria and anarchy cost. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 161–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic congestion games among coalitions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 572–583. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and the satisfiability threshold conjecture. Random Structures & Algorithms 7(1), 59–80 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for approximating nash equilibria in bimatrix games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix games: A graph theoretic approach. In: Proc. of the 32nd Int. Symp. on Math. Found. of Comp. Sci (MFCS 2007). LNCS, Springer, Heidelberg (2007), Preliminary version appeared as technical report DELIS-TR-0487 of EU Project DELIS – Dynamically Evolving Large Scale Information Systems (January 2007)Google Scholar
  19. 19.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. Theory of Computing Systems, Special Issue devoted to SIROCCO 2002 36(6), 683–693 (2003)Google Scholar
  20. 20.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of the 4th ACM Conf. on El. Comm (EC 2003). Assoc. of Comp. Mach., pp. 36–41. ACM Press, New York (2003)CrossRefGoogle Scholar
  22. 22.
    Monderer, D., Shapley, L.: Potential games. Games & Econ. Behavior 14, 124–143 (1996)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Nash, J.: Noncooperative games. Annals of Mathematics 54, 289–295 (1951)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Englewood Cliffs (1982)MATHGoogle Scholar
  25. 25.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J. of Game Theory 2, 65–67 (1973)MATHCrossRefGoogle Scholar
  26. 26.
    Roughdarden, T., Tardos, E.: How bad is selfish routing? J. of ACM 49(2), 236–259 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Spyros C. Kontogiannis
    • 1
    • 2
  • Paul G. Spirakis
    • 2
  1. 1.Computer Science Department, University of Ioannina, 45110 IoanninaGreece
  2. 2.Research Academic Computer Technology Institute, P.O. Box 1382, N. Kazantzaki Str., 26500 Rio–PatraGreece

Personalised recommendations