An Exponential Gap Between LasVegas and Deterministic Sweeping Finite Automata

  • Christos Kapoutsis
  • Richard Královič
  • Tobias Mömke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4665)

Abstract

A two-way finite automaton is sweeping if its input head can change direction only on the end-markers. For each n ≥ 2, we exhibit a problem that can be solved by a O(n2)-state sweeping LasVegas automaton, but needs 2Ω(n) states on every sweeping deterministic automaton.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hromkovič, J., Schnitger, G.: On the power of LasVegas for one-way communication complexity, OBDDs, and finite automata. Information and Computation 169, 284–296 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hromkovič, J., Schnitger, G.: On the power of LasVegas II: two-way finite automata. Theoretical Computer Science 262(1–2), 1–24 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kapoutsis, C.A.: Small sweeping 2NFAs are not closed under complement. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 144–156. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Macarie, I.I., Seiferas, J.I.: Strong equivalence of nondeterministic and randomized space-bounded computations (Manuscript 1997)Google Scholar
  5. 5.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Proceedings of the STOC, pp. 275–286 (1978)Google Scholar
  6. 6.
    Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21(2), 195–202 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christos Kapoutsis
    • 1
  • Richard Královič
    • 1
  • Tobias Mömke
    • 1
  1. 1.Department of Computer Science, ETH Zürich 

Personalised recommendations