Know Thy Sensor: Trust, Data Quality, and Data Integrity in Scientific Digital Libraries

  • Jillian C. Wallis
  • Christine L. Borgman
  • Matthew S. Mayernik
  • Alberto Pepe
  • Nithya Ramanathan
  • Mark Hansen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4675)


For users to trust and interpret the data in scientific digital libraries, they must be able to assess the integrity of those data. Criteria for data integrity vary by context, by scientific problem, by individual, and a variety of other factors. This paper compares technical approaches to data integrity with scientific practices, as a case study in the Center for Embedded Networked Sensing (CENS) in the use of wireless, in-situ sensing for the collection of large scientific data sets. The goal of this research is to identify functional requirements for digital libraries of scientific data that will serve to bridge the gap between current technical approaches to data integrity and existing scientific practices.


data integrity data quality trust user centered design user experience scientific data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Protein Data Bank. Visited: (October 4, 2006),
  2. 2.
    Borgman, C.L.: Scholarship in the Digital Age: Information, Infrastructure, and the Internet. MIT Press, Cambridge, MA (2007)Google Scholar
  3. 3.
    Traweek, S.: Beamtimes and lifetimes: the world of high energy physicists. 1st Harvard University Press pbk, vol. xv, p. 187. Harvard University Press, Cambridge, Mass (1992)Google Scholar
  4. 4.
    Galison, P.: Image and Logic: A Material Culture of Microphysics. University of Chicago Press, Chicago (1997)Google Scholar
  5. 5.
    Bowker, G.C.: Biodiversity datadiversity. Social Studies of Science 30(5), 643–683 (2000)CrossRefGoogle Scholar
  6. 6.
    Bowker, G.C.: Mapping biodiversity. International Journal of Geographical Information Science 14(8), 739–754 (2000)CrossRefGoogle Scholar
  7. 7.
    Bowker, G.C.: Work and information practices in the sciences of biodiversity. In: VLDB 2000, Proceedings of 26th international conference on very large data bases. El Abbadi, A., et al. Cairo, Egypt Kaufmann, pp. 693–696 (2000)Google Scholar
  8. 8.
    Hey, T., Trefethen, A.: The Data Deluge: An e-Science Perspective. In: Grid Computing – Making the Global Infrastructure a Reality, Wiley, Chichester (2005) (Visited: January 20, 2005),
  9. 9.
    Bowker, G.C.: Memory Practices in the Sciences. MIT Press, Cambridge, MA (2005)Google Scholar
  10. 10.
    Zimmerman, A.S.: New Knowledge from Old Data: The Role of Standards in the Sharing and Reuse of Ecological Data. Science, Technology, & Human Values (in press)Google Scholar
  11. 11.
    Borgman, C.L., Wallis, J.C., Enyedy, N.: Little Science confronts the data deluge: Habitat ecology, embedded sensor networks, and digital libraries. International Journal on Digital Libraries (in press)Google Scholar
  12. 12.
    Isermann, R.: Fault diagnosis and fault tolerance. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Tolle, G., et al.: A macroscope in the redwoods. In: Sensys, San Diego, CA (2005)Google Scholar
  14. 14.
    Borgman, C.L, Wallis, J.C., Enyedy, N.: Building Digital Libraries for Scientific Data: An exploratory study of data practices in habitat ecology. In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C. (eds.) ECDL 2006. LNCS, vol. 4172, pp. 170–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Borgman, C.L., et al.: Drowning in Data: Digital Library Architecture to Support Scientists’ Use of Embedded Sensor Networks. In: JCDL ’07: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries. Vancouver, BC. Association for Computing Machinery (in press)Google Scholar
  16. 16.
    Lofland, J., et al.: Analyzing Social Settings: A Guide to Qualitative Observation and Analysis, Wadsworth/Thomson Learning, Belmont, CA(2006)Google Scholar
  17. 17.
    Glaser, B.G., Strauss, A.L.: The discovery of grounded theory; strategies for qualitative research. In: Observations, Aldine Pub. Co., Chicago (1967)Google Scholar
  18. 18.
    Singh, A., et al.: IDEA: Iterative experiment Design for Environmental Applications. CENS Technical Report (visited January 28, 2007) (2006),
  19. 19.
    Ramanathan, N., et al.: Investigation of hydrologic and biogeochemical controls on arsenic mobilization using distributed sensing at a field site in Munshiganj, Bangladesh. in American Geophysical Union, Fall Meeting (visited June 6, 2007) (2006),
  20. 20.
    Ramanathan, N., et al.: Designing Wireless Sensor Networks as a Shared Resource for Sustainable Development. In: Information and Communication Technologies and Development (2006)Google Scholar
  21. 21.
    Chen, G., et al.: Sharing Sensor Network Data. CENS Technical Report (visited January 28, 2007) (2007),
  22. 22.
    Chang, K., et al.: - A Centralized Repository to Slog Sensor Network Data. In: International Conference on Distributed Networks (DCOSS)/EAWMS (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jillian C. Wallis
    • 1
  • Christine L. Borgman
    • 2
  • Matthew S. Mayernik
    • 2
  • Alberto Pepe
    • 2
  • Nithya Ramanathan
    • 3
  • Mark Hansen
    • 4
  1. 1.Center for Embedded Networked Sensing, UCLA 
  2. 2.Department of Information Studies, Graduate School of Education & Information Studies, UCLA 
  3. 3.Department of Computer Science, Henry Samueli School of Engineering & Applied Science, UCLA 
  4. 4.Department of Statistics, College of Letters & Science, UCLA 

Personalised recommendations