Characterization and Recognition of Digraphs of Bounded Kelly-width

  • Daniel Meister
  • Jan Arne Telle
  • Martin Vatshelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4769)

Abstract

Kelly-width is a parameter of directed graphs recently proposed by Hunter and Kreutzer as a directed analogue of treewidth. We give several alternative characterizations of directed graphs of bounded Kelly-width in support of this analogy. We apply these results to give the first polynomial-time algorithm recognizing directed graphs of Kelly-width 2. For an input directed graph G = (V, A) the algorithm will output a vertex ordering and a directed graph H = (V, B) with A ⊆ B witnessing either that G has Kelly-width at most 2 or that G has Kelly-width at least 3, in time linear in H.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L.: Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Hunter, P., Kreutzer, S.: Digraph Measures: Kelly Decompositions, Games, and Orderings. In: SODA 2007. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 637–644. ACM Press, New York (2007)Google Scholar
  4. 4.
    Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed Tree-Width. Journal of Combinatorial Theory, Series B 82, 138–154 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Meister, D., Telle, J.A., Vatshelle, M.: Characterization and recognition of digraphs of bounded Kelly-width. Technical report no. 351, Institutt for Informatikk, Universitetet i Bergen (2007)Google Scholar
  6. 6.
    Obdržálek, J.: DAG-width – Connectivity Measure for Directed Graphs. In: SODA 2006. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821. ACM Press, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Safari, M.A.: D-Width: A More Natural Measure for Directed Tree Width. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Meister
    • 1
  • Jan Arne Telle
    • 1
  • Martin Vatshelle
    • 1
  1. 1.Institutt for Informatikk, Universitetet i Bergen, 5020 BergenNorway

Personalised recommendations