Advertisement

Pathwidth of Circular-Arc Graphs

  • Karol Suchan
  • Ioan Todinca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4769)

Abstract

The pathwidth of a graph G is the minimum clique number of H minus one, over all interval supergraphs H of G. Although pathwidth is a well-known and well-studied graph parameter, there are extremely few graph classes for which pathwidh is known to be tractable in polynomial time. We give in this paper an \(\mathcal{O}(n^2)\)-time algorithm computing the pathwidth of circular-arc graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.: A Partial k-Arboretum of Graphs with Bounded Treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H., Fomin, F.: Approximating the pathwidth of outerplanar graphs. Journal of Algorithms 43(2), 190–200 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. Journal of Algorithms 21(2), 358–402 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ellis, J.A., Markov, M.: Computing the vertex separation of unicyclic graphs. Information and Computation 192(2), 123–161 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ellis, J.A., Sudborough, I.H., Turner, J.S.: The Vertex Separation and Search Number of a Graph. Information and Computation 113(1), 50–79 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fomin, F., Thilikos, D.: A 3-approximation for the pathwidth of Halin graphs. Journal of Discrete Algorithms 4(4), 499–510 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)MATHGoogle Scholar
  8. 8.
    Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing minimal interval completions: towards better understanding of profile and pathwidth. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 236–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Kloks, T.: Treewidth of circle graphs. Int. J. Found. Comput. Sci. 7(2), 111–120 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    Kloks, T., Kratsch, D., Wong, C.K.: Minimum Fill-in on Circle and Circular-Arc Graphs. J. Algorithms 28(2), 272–289 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    McConnell, R.M.: Linear-Time Recognition of Circular-Arc Graphs. Algorithmica 37(2), 93–147 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Meggido, N., Hakimi, S.L., Garey, M.R., Johson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. Journal of the ACM 35, 18–44 (1988)CrossRefGoogle Scholar
  13. 13.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory. Series B 35, 39–61 (1983)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time. J. Algorithms 47(1), 40–59 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Szpilrajn-Marczewski, E.: Sur deux propriétés des classes d’ensembles. Fundamenta Mathematicae 33, 303–307 (1945)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Karol Suchan
    • 2
    • 3
  • Ioan Todinca
    • 1
  1. 1.LIFO, Université d’Orléans, 45067 Orléans Cedex 2France
  2. 2.Departamento de Ingeniería Matemática, Universidad de Chile, SantiagoChile
  3. 3.Department of Discrete Mathematics, Faculty of Applied Mathematics, AGH, CracowPoland

Personalised recommendations