# Minimum-Weight Cycle Covers and Their Approximability

• Bodo Manthey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4769)

## Abstract

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L ⊆ ℕ.

We investigate how well L-cycle covers of minimum weight can be approximated. For undirected graphs, we devise a polynomial-time approximation algorithm that achieves a constant approximation ratio for all sets L. On the other hand, we prove that the problem cannot be approximated within a factor of 2 − ε for certain sets L.

For directed graphs, we present a polynomial-time approximation algorithm that achieves an approximation ratio of O(n), where n is the number of vertices. This is asymptotically optimal: We show that the problem cannot be approximated within a factor of o(n).

To contrast the results for cycle covers of minimum weight, we show that the problem of computing L-cycle covers of maximum weight can, at least in principle, be approximated arbitrarily well.

## Preview

### References

1. 1.
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
2. 2.
Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)Google Scholar
3. 3.
Bläser, M., Manthey, B.: Approximating maximum weight cycle covers in directed graphs with weights zero and one. Algorithmica 42(2), 121–139 (2005)
4. 4.
Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality. Journal of Discrete Algorithms 4(4), 623–632 (2006)
5. 5.
Bläser, M., Shankar Ram, L., Sviridenko, M.I.: Improved approximation algorithms for metric maximum ATSP and maximum 3-cycle cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 350–359. Springer, Heidelberg (2005)Google Scholar
6. 6.
Bläser, M., Siebert, B.: Computing cycle covers without short cycles. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 368–379. Springer, Heidelberg (2001)
7. 7.
Blum, A.L., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest superstrings. Journal of the ACM 41(4), 630–647 (1994)
8. 8.
Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Information Processing Letters 75(3), 133–138 (2000)
9. 9.
Sunil Chandran, L., Shankar Ram, L.: On the relationship between ATSP and the cycle cover problem. Theoretical Computer Science 370(1-3), 218–228 (2007)
10. 10.
Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algorithms for Max TSP. Information Processing Letters 95(2), 333–342 (2005)
11. 11.
Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)
12. 12.
Hartvigsen, D.: An Extension of Matching Theory. PhD thesis, Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (September 1984)Google Scholar
13. 13.
Hassin, R., Rubinstein, S.: On the complexity of the k-customer vehicle routing problem. Operations Research Letters 33(1), 71–76 (2005)
14. 14.
Hassin, R., Rubinstein, S.: Erratum to “An approximation algorithm for maximum triangle packing” [Discrete Applied Mathematics 154, 971–979 (2006)]. Discrete Applied Mathematics 154(18), 2620 (2006)
15. 15.
Hell, P., Kirkpatrick, D.G., Kratochvíl, J., Kríz, I.: On restricted two-factors. SIAM Journal on Discrete Mathematics 1(4), 472–484 (1988)
16. 16.
Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.I.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM 52(4), 602–626 (2005)
17. 17.
Lovász, L., Plummer, M.D.: Matching Theory. North-Holland Mathematics Studies, vol. 121. Elsevier, Amsterdam (1986)
18. 18.
Manthey, B.: Approximation algorithms for restricted cycle covers based on cycle decompositions. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 336–347. Springer, Heidelberg (2006)
19. 19.
Manthey, B.: On approximating restricted cycle covers. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 282–295. Springer, Heidelberg (2006)
20. 20.
Manthey, B.: On approximating restricted cycle covers. Report 07-011, Electronic Colloquium on Computational Complexity (ECCC) (2007)Google Scholar
21. 21.
Odifreddi, P.: Classical Recursion Theory. Studies in Logic and The Foundations of Mathematics, vol. 125. Elsevier, Amsterdam (1989)
22. 22.
Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and Its Applications, vol. 30. Oxford University Press, Oxford (2005)
23. 23.
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Heidelberg (2003)
24. 24.
Sweedyk, Z.: A $$2\frac12$$-approximation algorithm for shortest superstring. SIAM Journal on Computing 29(3), 954–986 (1999)
25. 25.
Vornberger, O.: Easy and hard cycle covers. Technical report, Universität/Gesamthochschule Paderborn (1980)Google Scholar