A Very Practical Algorithm for the Two-Paths Problem in 3-Connected Planar Graphs

  • Torben Hagerup
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4769)


A linear-time algorithm that does not need a planar embedding is presented for the problem of computing two vertex-disjoint paths, each with prescribed endpoints, in an undirected 3-connected planar graph.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10, 111–121 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass (1969)Google Scholar
  3. 3.
    Kramer, M.R., van Leeuwen, J.: The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits. In: Preparata, F.P. (ed.) Advances in Computing Research, vol. 2, pp. 129–146. JAI Press, Greenwich, Conn (1984)Google Scholar
  4. 4.
    Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsletter 5, 31–36 (1975)CrossRefGoogle Scholar
  5. 5.
    Perković, L., Reed, B.: An improved algorithm for finding tree decompositions of small width. Internat. J. Foundat. Comput. Sci. 11, 365–371 (2000)CrossRefGoogle Scholar
  6. 6.
    Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph. J. ACM 25, 1–9 (1978)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Robertson, N., Seymour, P.D.: Graph Minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63, 65–110 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Comput. 23, 780–788 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM 27, 445–456 (1980)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tholey, T.: Solving the 2-disjoint paths problem in nearly linear time. Theory Comput. Systems 39, 51–78 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Woeginger, G.: A simple solution to the two paths problem in planar graphs. Inform. Process. Lett. 36, 191–192 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Torben Hagerup
    • 1
  1. 1.Institut für Informatik, Universität Augsburg, 86135 AugsburgGermany

Personalised recommendations