Adaptive Soundness of Static Equivalence

  • Steve Kremer
  • Laurent Mazaré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4734)

Abstract

We define a framework to reason about implementations of equational theories in the presence of an adaptive adversary. We particularly focus on soundess of static equivalence. We illustrate our framework on several equational theories: symmetric encryption, XOR, modular exponentiation and also joint theories of encryption and modular exponentiation. This last example relies on a combination result for reusing proofs for the separate theories. Finally, we define a model for symbolic analysis of dynamic group key exchange protocols, and show its computational soundness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 46–58. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communications. In: Proc. 28th Annual ACM Symposium on Principles of Programming Languages (POPL 2001), pp. 104–115. ACM Press, New York (2001)CrossRefGoogle Scholar
  4. 4.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Backes, M., Pfitzmann, B.: Limits of the cryptographic realization of Dolev-Yao-style XOR. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 336–354. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: Proc. 10th ACM Conference on Computer and Communications Security (CCS 2003), pp. 220–230. ACM Press, New York (2003)CrossRefGoogle Scholar
  8. 8.
    Bana, G., Mohassel, P., Stegers, T.: The computational soundness of formal indistinguishability and static equivalence. In: ASIAN 2006. Proc. 11th Asian Computing Science Conference, 2006. LNCS, Springer, Heidelberg (to appear)Google Scholar
  9. 9.
    Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: Proc. 25th IEEE Symposium on Security and Privacy (SSP 2004), pp. 86–100. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
    Blanchet, B.: A computationally sound mechanized prover for security protocols. In: Proc. 27th IEEE Symposium on Security and Privacy (SSP 2006), pp. 140–154. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  12. 12.
    Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-Hellman key exchange – the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH with applications to protocol analysis and computational soundness. In: Menezes, A.J. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual authentication and key-exchange protocols (extended abstract). In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: Key derivation and randomness extraction. Technical Report 2005/061, Cryptology ePrint Archive (2005)Google Scholar
  17. 17.
    Cortier, V., Delaune, S., Lafourcade, P.: A Survey of Algebraic Properties Used in Cryptographic Protocols. Journal of Computer Security, 2005 (to appear)Google Scholar
  18. 18.
    Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic Polynomial-time Semantics for a Protocol Security Logic. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 16–29. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM 50(6), 852–921 (2003)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proc. 14th Annual ACM Symposium on Theory of Computing (STOC 1982), ACM Press, New York (1982)Google Scholar
  22. 22.
    Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. Research Report LSV-07-09, Laboratoire Spécification et Vérification, ENS Cachan, France, 27 pages (February 2007)Google Scholar
  23. 23.
    Laud, P.: A composable cryptographic library with nested operations. In: Proc. 12th ACM Conference on Computer and Communications Security (CCS 2005), pp. 26–35. ACM Press, New York (2005)CrossRefGoogle Scholar
  24. 24.
    Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 169–187. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Steve Kremer
    • 1
  • Laurent Mazaré
    • 1
  1. 1.LSV, ENS Cachan & CNRS & INRIA Futurs 

Personalised recommendations