A Practical Provider Authentication System for Bidirectional Broadcast Service

  • Takahiro Matsuda
  • Goichiro Hanaoka
  • Kanta Matsuura
  • Hideki Imai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4694)

Abstract

Several content distribution services via the Internet have been developed, and a number of bidirectional broadcasting services will be provided in the near future. Since such bidirectional broadcasting treats personal information of the users, provider authentication is necessary. Taking the currently existing broadcasting system using CAS cards into account, Ohtake et al. recently proposed the provider authentication system which utilizes key-insulated signature (KIS) schemes. However, the authors did not refer to details of what kind of KIS should be used. In this paper we supplement their works in terms of KIS specification. We carefully identify what kind of KIS should be used and propose concrete KIS schemes which realize both the reliability and the robustness required for the bidirectional broadcasting service.

Keywords

provider authentication bidirectional broadcasting digital signature key-insulated signature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Association of Radio Industries and Businesses, Conditional Access System Specifications for Digital Broadcasting ARIB STD-B25 (in Japanese)Google Scholar
  2. 2.
    An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proc. of the First ACM Conference on Computer and Communications Security, pp. 62–73. ACM, New York (1993)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 320–335. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In: Proc. of STOC’98, pp. 209–218 (1998)Google Scholar
  6. 6.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Schemes Secure Against Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)MATHCrossRefGoogle Scholar
  8. 8.
    Matsuda, T., Attrapadung, N., Hanaoka, G., Matsuura, K., Imai, H.: A CDH-based Strongly Unforgeable Signature in the Standard Model without Collision Resistant Hash Function (in Japanese). In: Proc. of SCIS’07 (2007)Google Scholar
  9. 9.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: Proc. of the Twenty First ACM Symposium on Theory of Computing, pp. 33–43. ACM, New York (1989)CrossRefGoogle Scholar
  10. 10.
    Ohtake, G., Hanaoka, G., Ogawa, K.: Provider Authentication for Bidirectional Broadcasting Service with Fixed Verification Key. In: Proc. of ISITA’06 (2006)Google Scholar
  11. 11.
    Paterson, K.G., Schuldt, J.C.N.: Efficient Identity-based Signatures Secure in the Standard Model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 207–222. Springer, Heidelberg (2006), eprint.iacr.org/2006/080 CrossRefGoogle Scholar
  12. 12.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 12–36. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Takahiro Matsuda
    • 1
  • Goichiro Hanaoka
    • 2
  • Kanta Matsuura
    • 1
  • Hideki Imai
    • 2
    • 3
  1. 1.Institute of Industrial Science, The University of Tokyo, TokyoJapan
  2. 2.Research Center for Information Security, National Institute of Advanced, Industrial Science and Technology, TokyoJapan
  3. 3.Faculty of Science and Engineering, Chuo University, TokyoJapan

Personalised recommendations