Advertisement

APD-A Tool for Identifying Behavioural Patterns Automatically from Clickstream Data

  • I-Hsien Ting
  • Lillian Clark
  • Chris Kimble
  • Daniel Kudenko
  • Peter Wright
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)

Abstract

Clickstream can be a rich source of data for analysing user behaviour, but the volume of these logs makes it difficult to identify and categorise behavioural patterns. In this paper, we introduce the Automatic Pattern Discovery (APD) method, a technique for automated processing of Clickstream data to identify a user’s browsing patterns. The paper also includes case study that is used to illustrate the use of the APD and to evaluate its performance.

Keywords

Web Usage Mining Clickstream Data Browsing Behaviour  Traversal Pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canter, D., Rivers, R., Storrs, G.: Characterising users navigation through complex data structures. Behaviour and Information Technology 4(2), 93–102 (1985)CrossRefGoogle Scholar
  2. 2.
    Chi, E.H.: Improving web usability through visualisation IEEE Internet Computing, March-April 2002, pp. 64–71 (2002)Google Scholar
  3. 3.
    Clark, L., Ting, I., Kimble, C., Wright, P., Kudenko, D.: Combining Ethnographic and Clickstream Data to Identify Browsing Strategies Information Research 11(2), paper 249 (2006), Available at http://InformationR.net/ir/11-2/paper249.html
  4. 4.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. Journal of Knowledge and Information System 1(1), 5–32 (1999)CrossRefGoogle Scholar
  5. 5.
    Cooley, R., Tan, P.N., Srivastava, J.: Discovery of Interesting Usage Patterns from Web Data, LNCS Vol. In: Masand, B., Spiliopoulou, M. (eds.) Web Usage Analysis and User Profiling. LNCS (LNAI), vol. 1836, pp. 163–182. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Eick, S.G.: Visual Analysis of Website Browsing Patterns. In: Borner, K., Chen, C. (eds.) Visual Interface to Digital Libraries, pp. 65–77 (2002)Google Scholar
  7. 7.
    Ezeife, C.I., Lu, Y.: Mining Web Log Sequential Patterns with Position Coded Pre-Order Linked WAP-Tree, Data Mining and Knowledge Discovery, 10, 5–38 (2005)Google Scholar
  8. 8.
    Ting, I.H., Kimble, C., Kudenko, D.: Visualising and Classifying the Pattern of User’s Browsing Behaviour for Website Design Recommendation. In: Paper presented at the International Workshop on Knowledge Discovery in Data Stream, Pisa, Italy, vol. 24, pp. 101–102 (September 2004)Google Scholar
  9. 9.
    Ting, I.H., Kimble, C., Kudenko, D.: A Pattern Restore Method for Restoring Missing Patterns in Server Side Clickstream Data. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 501–512. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Xing, D., Shen, J.: Efficient Data Mining for Web Navigation Patterns. Information and Software Technology 46(1), 55–63 (2004)CrossRefGoogle Scholar
  11. 11.
    Yen, S.J., Lee, Y.S.: An Efficient Data Mining Algorithm for Discovering Web Access Patterns, In Zhou, X. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.) APWeb 2003. LNCS, vol. 2642, pp. 187–192. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • I-Hsien Ting
    • 1
  • Lillian Clark
    • 1
  • Chris Kimble
    • 1
  • Daniel Kudenko
    • 1
  • Peter Wright
    • 1
  1. 1.Department of Computer Science, The University of York, Heslington, York YO105DDUnited Kingdom

Personalised recommendations