A Likelihood Ratio Test for Differential Metabolic Profiles in Multiple Intensity Measurements

  • Frank Klawonn
  • Claudia Choi
  • Beatrice Benkert
  • Bernhard Thielen
  • Richard Münch
  • Max Schobert
  • Dietmar Schomburg
  • Dieter Jahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)

Abstract

High throughput technologies like transcriptomics using DNA arrays or metabolomics employing a combination of gas chromatography with mass spectrometry provide valuable information about cellular processes. However, the measurements are often highly corrupted with noise of the experimental data which makes it sometimes difficult to draw reliable conclusions. Therefore, suitable statistical methods are needed for the evaluation of the experimental data to distinguish changes caused by biological phenomena from random variations due to noise. This paper introduces a likelihood ratio test to multiple metabolome measurements. The method was tested to differentiate differential metabolite compositions obtained from the pathogenic bacterium Pseudomonas aeruginosa grown under various environmental conditions.

Keywords

Likelihood ratio test Pseudomonas aeruginosa metabolomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joyce, A.R., Palsson, B.Ø: The model organism as a system: integrating ’omics’ data sets. Nat. Rev. Mol. Cell Biol. 7, 198–210 (2006)Google Scholar
  2. 2.
    Hollywood, K., Brison, D.R., Goodacre, R.: Metabolomics: current technologies and future trends. Proteomics 6, 4716–4723 (2006)CrossRefGoogle Scholar
  3. 3.
    Strelkov, S., von Elstermann, M., Schomburg, D.: Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol. Chem. 385(9), 853–861 (2004)CrossRefGoogle Scholar
  4. 4.
    Kell, D.B.: Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov. Today 11, 1085–1092 (2006)CrossRefGoogle Scholar
  5. 5.
    Weckwerth, W., Morgenthal, K.: Metabolomics: from pattern recognition to biological interpretation. Drug Discov. Today 10(22), 1551–1558 (2005)CrossRefGoogle Scholar
  6. 6.
    Choi, J.Y., Sifri, C.D., Goumnerov, B.C., Rahme, L.G., Ausubel, F.M., Calderwood, S.B.: Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J. Bacteriol. 184, 952–961 (2002)CrossRefGoogle Scholar
  7. 7.
    Förster, J., Gombert, A.K., Nielsen, J.: A functional genomics approach using metabolomics and in silico pathway analysis. Biotechn. Bioeng. 79, 703–712 (2002)CrossRefGoogle Scholar
  8. 8.
    Spellman, P.T.: Cluster analysis and display. In: Bowtell, D., Sambrook, J. (eds.) DNA Microarrays, Cold Spring Harbor Lab, pp. 569–581 (2002)Google Scholar
  9. 9.
    Georgieva, O., Klawonn, F., Härtig, E.: Fuzzy clustering of macroarray data. In: Reusch, B. (ed.) Computational Intelligence, Theory and Application, pp. 83–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Klawonn, F., Hundertmark, C., Jänsch, L.: A maximum likelihood approach to noise estimation for intensity measurements in biology. In: Tsumoto, S., Clifton, C., Zhong, N., Wu, X., Liu, J., Wah, B., Cheung, Y.M. (eds.) Proc. 6th IEEE Intern. Conf. on Data Mining: Workshops, pp. 180–184. IEEE, Los Alamitos (2006)Google Scholar
  11. 11.
    Baldi, P., Long, A.D.: A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509–519 (2001)CrossRefGoogle Scholar
  12. 12.
    Cui, X., Hwang, J.T.G., Qiu, J., Blades, N.J., Churchill, G.A.: Improved statistical tests for differential gene expression by shrinking variance components. Biostatistics 6, 59–75 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    McLachlan, G.J., Bean, R.W., Ben-Tovim Jones, L.: A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22, 1608–1615 (2006)CrossRefGoogle Scholar
  14. 14.
    Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Statistics 9, 60–62 (1938)CrossRefMATHGoogle Scholar
  15. 15.
    Miller, R.G.J.: Simultaneous Statistical Inference. Springer, New York (1991)MATHGoogle Scholar
  16. 16.
    Shaffer, J.P.: Multiple hypothesis testing. Ann. Rev. Psych. 46, 561–584 (1995)CrossRefGoogle Scholar
  17. 17.
    Borriello, G., Werner, E., Roe, F., Kim, A.M., Ehrlich, G.D., Stewart, P.S.: Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 48, 2659–2664 (2004)CrossRefGoogle Scholar
  18. 18.
    Cioni, P., Bramanti, E., Strambini, G.B.: Effects of sucrose on the internal dynamics of azurin. Biophys. J. 88(6), 4213–4222 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frank Klawonn
    • 1
  • Claudia Choi
    • 2
  • Beatrice Benkert
    • 2
  • Bernhard Thielen
    • 3
  • Richard Münch
    • 2
  • Max Schobert
    • 2
  • Dietmar Schomburg
    • 3
  • Dieter Jahn
    • 2
  1. 1.Department of Computer Science, University of Applied Sciences Braunschweig /Wolfenbüttel, Salzdahlumer Str. 46/48, 38302 WolfenbüttelGermany
  2. 2.Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 BraunschweigGermany
  3. 3.Institute of Biochemistry, University of Köln, Zülpicher Straße 47, 50674 KölnGermany

Personalised recommendations