Advertisement

Automated Ham Quality Classification Using Ensemble Unsupervised Mapping Models

  • Bruno Baruque
  • Emilio Corchado
  • Hujun Yin
  • Jordi Rovira
  • Javier González
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4693)

Abstract

This multidisciplinary study focuses on the application and comparison of several topology preserving mapping models upgraded with some classifier ensemble and boosting techniques in order to improve those visualization capabilities. The aim is to test their suitability for classification purposes in the field of food industry and more in particular in the case of dry cured ham. The data is obtained from an electronic device able to emulate a sensory olfative taste of ham samples. Then the data is classified using the previously mentioned techniques in order to detect which batches have an anomalous smelt (acidity, rancidity and different type of taints) in an automated way.

Keywords

topology preserving mappings ensembles electronic nose food industry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monahan, R.L., Brunton, N.P., Cronin, D.A., Durcan, R.: Determination of Hexanal in Cooked Turkey Using Solid Phase Microextraction (Spme)/Gc. In: 44th International Congress of Meat science and Technology (ICoMST), vol. 1, pp. 586–587 (1998)Google Scholar
  2. 2.
    Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Yin, H.: Data Visualisation and Manifold Mapping Using the Visom. Neural Networks 15, 1005–1016 (2002)CrossRefGoogle Scholar
  4. 4.
    Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A Principle of Neural Associative Memory. Neuroscience 2, 1065–1076 (1977)CrossRefGoogle Scholar
  5. 5.
    Yin, H.: Visom - a Novel Method for Multivariate Data Projection and Structure Visualization. Neural Networks, IEEE Transactions 13, 237–243 (2002)CrossRefGoogle Scholar
  6. 6.
    Kraaijveld, M.A., Mao, J., Jain, A.K.: A Nonlinear Projection Method Based on Kohonen’s Topology Preserving Maps. Neural Networks, IEEE Transactions 6, 548–559 (1995)CrossRefGoogle Scholar
  7. 7.
    Heskes, T.: Balancing between Bagging and Bumping. In: Advances in Neural Information Processing Systems 9 - Proceedings of the 1996 Conference, vol. 9, pp. 466–472 (1997)Google Scholar
  8. 8.
    Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)zbMATHGoogle Scholar
  9. 9.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear Programming Boosting Via Column Generation. Machine Learning 46, 225–254 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  12. 12.
    Schwenk, H., Bengio, Y.: Boosting Neural Networks. Neural Computation 12, 1869–1887 (2000)CrossRefGoogle Scholar
  13. 13.
    Gabrys, B., Baruque, B., Corchado, E.: Outlier Resistant PCA Ensembles. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 432–440. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Corchado, E., Baruque, B., Gabrys, B.: Maximum Likelihood Topology Preserving Ensembles. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1434–1442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Petrakieva, L., Fyfe, C.: Bagging and Bumping Self-Organising Maps. Computing and Information Systems (2003)Google Scholar
  16. 16.
    Kaski, S.: Data Exploration Using Self-Organizing Maps. Department of Computer Science and Engineering. Helsinki University of Technology. Espoo, Finland (1997)Google Scholar
  17. 17.
    Baruque, B., Corchado, E., Yin, H.: ViSOM Ensembles for Visualization and Classification. In: International Work Conference on Artificial Neural Networks, San Sebastián, Spain, Springer, Heidelberg (2007)Google Scholar
  18. 18.
    Baruque, B., Corchado, E., Yin, H.: Boosting Unsupervised Competitive Learning Ensembles. In: ICANN 2007. International Conference of Neural Network (2007)Google Scholar
  19. 19.
    Georgakis, A., Li, H., Gordan, M.: An Ensemble of SOM Networks for Document Organization and Retrieval. In: Int. Conf. on Adaptive Knowledge Representation and Reasoning (AKRR’05), p. 6 (2005)Google Scholar
  20. 20.
    Baruque, B., Corchado, E., Yin, H.: VISOM Ensembles for Visualization and Classification. In: IWANN’07. International Work Conference on Artificial Neural Networks, San Sebastián, Spain, Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bruno Baruque
    • 1
  • Emilio Corchado
    • 1
  • Hujun Yin
    • 2
  • Jordi Rovira
    • 3
  • Javier González
    • 3
  1. 1.Department of Civil Engineering. University of BurgosSpain
  2. 2.School of Electrical and Electronic Engineering. University of ManchesterUK
  3. 3.Department of Biotechnology and Food Science, University of BurgosSpain

Personalised recommendations