Relational Algebra for Ranked Tables with Similarities: Properties and Implementation

  • Radim Belohlavek
  • Stanislav Opichal
  • Vilem Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4723)


The paper presents new developments in an extension of Codd’s relational model of data. The extension consists in equipping domains of attribute values with a similarity relation and adding ranks to rows of a database table. This way, the concept of a table over domains (i.e., relation over a relation scheme) of the classical Codd’s model extends to the concept of a ranked table over domains with similarities. When all similarities are ordinary identity relations and all ranks are set to 1, our extension becomes the ordinary Codd’s model. The main contribution of our paper is twofold. First, we present an outline of a relational algebra for our extension. Second, we deal with implementation issues of our extension. In addition to that, we also comment on related approaches presented in the literature.


Fuzzy Logic Relational Model Similarity Relation Relation Scheme Relational Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., et al.: The Lowell database research self-assessment. Comm. ACM 48(5), 111–118 (2005)CrossRefGoogle Scholar
  2. 2.
    Belohlavek, R., Vychodil, V.: Functional dependencies of data tables over domains with similarity relations. In: IICAI 2005, Pune, India, December 2005, pp. 2486–2504 (2005)Google Scholar
  3. 3.
    Belohlavek, R., Vychodil, V.: Data tables with similarity relations: functional dependencies, complete rules and non-redundant bases. In: Lee, M.L., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Relational model of data over domains with similarities: an extension for similarity queries and knowledge extraction. In: IEEE IRI 2006, The 2006 IEEE Int. Conf. Information Reuse and Integration, Waikoloa Village, Hawaii, USA, September 16–18, 2006, pp. 207–213 (2006)Google Scholar
  5. 5.
    Belohlavek, R., Vychodil, V.: Codd’s relational model of data and fuzzy logic: comparisons, observations, and some new results. In: Proc. CIMCA 2006, Sydney, Australia, p. 6 (2006), ISBN 0–7695–2731–0Google Scholar
  6. 6.
    Bosc, P., Kraft, D., Petry, F.: Fuzzy sets in database and information systems: status and opportunities. Fuzzy Sets and Syst. 156, 418–426 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Buckles, B.P., Petry, F.: A fuzzy representation of data for relational databases. Fuzzy Sets Syst. 7, 213–226 (1982)zbMATHCrossRefGoogle Scholar
  8. 8.
    Buckles, B.P., Petry, F.E.: Fuzzy databases in the new era. In: ACM SAC 1995, pp. 497–502, Nashville, TN (1995)Google Scholar
  9. 9.
    Date, C.J.: Database Relational Model: A Retrospective Review and Analysis. Addison-Wesley, Reading (2000)Google Scholar
  10. 10.
    Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. System Sci. 58, 83–99 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fagin, R.: Combining fuzzy information: an overview. ACM SIGMOD Record 31(2), 109–118 (2002)Google Scholar
  12. 12.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Beldock, England (2001)Google Scholar
  13. 13.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  14. 14.
    Illyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. The VLDB Journal 13, 207–221 (2004)CrossRefGoogle Scholar
  15. 15.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  16. 16.
    Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RanSQL: Query Algebra and Optimization for Relational top-k queries. In: ACM SIGMOD 2005, pp. 131–142 (2005)Google Scholar
  17. 17.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983)zbMATHGoogle Scholar
  18. 18.
    Medina, J.M., Vila, M.A., Cubero, J.C., Pons, O.: Towards the implementation of a generalized fuzzy relational database model. Fuzzy Sets and Systems 75, 273–289 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Penzo, W.: Rewriting rules to permeate complex similarity and fuzzy queries within a relational dastabase system. IEEE Trans. Knowledge and Data Eng. 17, 255–270 (2005)CrossRefGoogle Scholar
  20. 20.
    Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Inf. Sci. 34, 115–143 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database Systems 13(2), 129–166 (1988)CrossRefGoogle Scholar
  22. 22.
    Takahashi, Y.: Fuzzy database query languages and their relational completeness theorem. IEEE Trans. Knowledge and Data Engineering 5, 122–125 (1993)CrossRefGoogle Scholar
  23. 23.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3, 177–200 (1971)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Radim Belohlavek
    • 1
    • 3
  • Stanislav Opichal
    • 2
  • Vilem Vychodil
    • 3
  1. 1.Dept. Systems Science and Industrial Engineering, T. J. Watson School of Engineering and Applied Science, Binghamton University–SUNY, PO Box 6000, Binghamton, NY 13902–6000USA
  2. 2.PIKE ELECTRONIC, Ltd.Czech Republic
  3. 3.Dept. Computer Science, Palacky University, Olomouc, Tomkova 40, CZ-779 00 OlomoucCzech Republic

Personalised recommendations