Advertisement

Hybrid Filtering Methods Applied in Web-Based Movie Recommendation System

  • Ngoc Thanh Nguyen
  • Maciej Rakowski
  • Michal Rusin
  • Janusz Sobecki
  • Lakhmi C. Jain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4692)

Abstract

In this paper web-based movie recommendation system using hybrid filtering methods is presented. The recommender systems deliver one of the methods for increasing the web-based systems attractiveness and usability. We can distinguish three basic filtering methods that are applied in recommender systems: demographic, content-based, and collaborative. The combination of these approaches that is called hybrid method.

Keywords

Hybrid filtering web-based systems movie recommendation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Q., Aickelin, U.: Movie Recommendation Systems using an artificial immune system. Poster Proceedings of ACDM, Bristol, UK. Engineers House (2004)Google Scholar
  2. 2.
    Christakou, C., Stafylopatis, A.: A Hybrid Movie Recommender System Based on Neural Networks. In: Proc. Fifth Int. Conf. on Intelligent Systems Design and Applications, pp. 500–505 (2005)Google Scholar
  3. 3.
    Elkan, C.: The Paradoxical Success of Fuzzy Logic. IEEE Expert, 3–8, 9–46 (August 1994) (First version in AAAI’93 proceedings, pp. 698-703) (1994)Google Scholar
  4. 4.
    Grant, S., McCalla, G.: A hybrid approach to making recommendations and its application to the movie domain. In: Proc. 2001 Canadian AI Conference, pp. 257–266 (2001)Google Scholar
  5. 5.
    Kobsa, A., Koenemann, J., Pohl, W.: Personalized Hypermedia Presentation Techniques for Improving Online Customer Relationships. Knowledge Eng. Rev. 16(2), 111–155 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Montaner, M., Lopez, B., de la Rosa, J.P.: A Taxonomy of Recommender Agents on the Internet. Artificial Intelligence Review 19, 285–330 (2003)CrossRefGoogle Scholar
  7. 7.
    Nguyen, N.T., Sobecki, J.: Using Consensus Methods to Construct Adaptive Interfaces in Multimodal Web-based Systems. Universal Access in Inf. Society 2(4), 342–358 (2003)CrossRefGoogle Scholar
  8. 8.
    Papatheodorou, C.: Machine Learning in User Modeling. Machine Learning and Its Applications, 286–294 (2001)Google Scholar
  9. 9.
    Rakowski, M., Rusin, M., Sobecki, J.: Hybrid recommendation applied in web-based movie information system. In: Multimedia and network information systems. Proceedings, Wrocław, September 21-22, / ed. by A. Zgrzywa. Wrocław: Oficyna Wydaw. PWroc, 2006. s. 361–369 (2006)Google Scholar
  10. 10.
    Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. In: CSCW’98, Seattle Washington USA, pp. 1–10 (1998)Google Scholar
  11. 11.
    Sobecki, J., Weihberg, M.: Consensus-based Adaptive User Interface Implementation in the Product Promotion. A chapter in book Design for a more inclusive world, Springer, London (to be published)Google Scholar
  12. 12.
    Data sets, downloaded in (April 2007), http://www.grouplens.org/taxonomy/term/14

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ngoc Thanh Nguyen
    • 1
  • Maciej Rakowski
    • 2
  • Michal Rusin
    • 1
  • Janusz Sobecki
    • 2
  • Lakhmi C. Jain
    • 3
  1. 1.Institute of Information Science and Engineering, Wroclaw Univ. of TechnologyPoland
  2. 2.Institute of Applied Informatics, Wroclaw Univ. of TechnologyPoland
  3. 3.School of Electrical and Information Engineering, Univ. of South AustraliaAustralia

Personalised recommendations