Modelling Shared Knowledge and Shared Knowledge Awareness in CSCL Scenarios Through Automated Argumentation Systems

  • María Paula González
  • Carlos Iván Chesñevar
  • Cesar A. Collazos
  • Guillermo R. Simari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4715)


Over the last few years, argumentation systems have been gaining increasing importance in several areas of Artificial Intelligence, mainly as a vehicle for facilitating rationally justifiable decision making when handling incomplete and potentially inconsistent information. Argumentation provides a sound model for dialectical reasoning, which underlies discussions among students when solving tasks collaboratively in a CSCL environment. In this setting, we identify the problem of constructing Shared Knowledge and its related Shared Knowledge Awareness. While Shared Knowledge refers to the common knowledge students acquire when they work in a collaborative activity, Shared Knowledge Awareness is associated with the consciousness on the Shared Knowledge that a particular student has. This paper presents a novel approach to model Shared Knowledge construction and the associated Shared Knowledge Awareness through an automated argumentation system.


Individual Knowledge Knowledge Engineer Laser Printer Argumentation System Collaborative Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collazos, C., Guerrero, L., Pino, J., Ochoa, S.: Introducing Knowledge-Shared Awareness. In: Procs. of IASTED 2002, USA, pp. 13–18 (2002)Google Scholar
  2. 2.
    Chesñevar, I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM Computing Surveys 32(4), 337–383 (2000)CrossRefGoogle Scholar
  3. 3.
    Kirschner, P., Buckingham, S., Carr, C. (eds.): Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making. Springer, London (2003)Google Scholar
  4. 4.
    Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.): ArgMAS 2005. LNCS (LNAI), vol. 4049. Springer, Heidelberg (2006)MATHGoogle Scholar
  5. 5.
    González, M.P., Collazos, C.A., Granollers, T.: Guidelines and usability principles to design and test Shared-Knowledge Awareness for a CSCL interface. In: Dimitriadis, Y.A., Zigurs, I., Gómez-Sánchez, E. (eds.) CRIWG 2006. LNCS, vol. 4154, pp. 102–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Maisonnasse, O., Brdiczka, N., Gourier, P.R.: Attentional Model for Perceiving Social Context in Intelligent Environments. In: AIAI. 3rd IFIP Conference on Artificial Intelligence Applications and Innovations, pp. 171–178. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Janssen, J., Gijsbert, E., Kanselaar, G.: Visualization of agreement and discussion processes during computer-supported collaborative learning. Comput. Hum. Behav. 23(3), 1105–1125 (2007)CrossRefGoogle Scholar
  8. 8.
    Cadiz, J., Gupta, A., Grudin, J.: Using Web annotations for asynchronous collaboration around documents. In: Proc. of the ACM CSCW 2000 Conf. on Computer-Supported Cooperative Work, pp. 309–318. ACM Press, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Eklundh, K.S., Rodriguez, H.: Coherence and Interactivity in Text-Based Group Discussions around Web Documents. In: HICSS 2004. Proc. 37th Int. Conf. on System Sciences, pp. 1530–1605. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  10. 10.
    Simari, G., Loui, R.: A Mathematical Treatment of Defeasible Reasoning and its Implementation. Artificial Intelligence 53, 125–157 (1992)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chesñevar, C., Maguitman, A., Simari, G.: Argument-Based Critics and Recommenders: A Qualitative Perspective on User Support Systems. Data & Knowledge Engineering 59(2), 293–319 (2006)CrossRefGoogle Scholar
  12. 12.
    Brena, R., Aguirre, J., Chesñevar, C., Ramirez, E., Garrido, L.: Knowledge and Information Distribution Leveraged by Intelligent Agents. In: Knowledge and Information Systems (KAIS), Springer, Heidelberg (2007, in press)Google Scholar
  13. 13.
    García, A., Simari, G.: Defeasible Logic Programming: An Argumentative Approach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reed, C., Rowe, G.: Araucaria: Software for Argument Analysis, Diagramming and Representation. Int. J. on Artificial Intelligence Tools 13(4), 961–979 (2004)CrossRefGoogle Scholar
  15. 15.
    Liu, X., Zhang, X., Soh, L-K., Al-Jaroodi, J., Jiang, H.: A Distributed, Multiagent Infrastructure for Real-Time, Virtual Classrooms. In: Proc. ICCE 2003, pp. 640–647 (2003)Google Scholar
  16. 16.
    Soller, A., Guizzardi, R., Molani, A., Perini, A.: SCALE: supporting community awareness, learning, and evolvement in an organizational learning environment. In: Proc. of the 6th international conference on Learning sciences, pp. 489–496 (2004)Google Scholar
  17. 17.
    Aronson, E., Blaney, N., Stephin, C., Sikes, J., Snapp, M.: The jigsaw classroom. Sage Publishing, Beverly Hills, CA (1978)Google Scholar
  18. 18.
    Kollar, I., Fischer, F., Slotta, J.D.: Internal and external collaboration scripts in webbased science learning at schools. In: Koschmann, T., Suthers, D., Chan, T.-W. (eds.) CSCL 2005: The Next 10 Years, pp. 331–340. Lawrence Erlbaum, Mahwah (2005)Google Scholar
  19. 19.
    Stahl, G.: A Model of Collaborative Knowledge-Building. In: Fishman, B., O’Connor, S. (eds.) 4th Int. Conf. of the Learning Sciences, pp. 70–77. Erlbaum, Mahwah (2000)Google Scholar
  20. 20.
    Ogata, H., Yano, Y.: Combining knowledge awareness and information filtering in an open-ended collaborative learning environment. Int. Journal of Artificial Intelligence in Education 11, 33–46 (2000)Google Scholar
  21. 21.
    Cox, R.: Representation construction, externalised cognition and individual differences. Learning and Instruction 9, 343–363 (1999)CrossRefGoogle Scholar
  22. 22.
    Tergan, S.-O., Keller, T. (eds.): Knowledge and Information Visualization. LNCS, vol. 3426. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Driver, R., Newton, P., Osborne, J.: Establishing the norms of scientific argumentation in classrooms. Science Education 84(3), 287–313 (2000)CrossRefGoogle Scholar
  24. 24.
    Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements. ACM Trans. Softw. Eng. Methodol. 14(3), 277–330 (2005)CrossRefGoogle Scholar
  25. 25.
    Yeung, D., Lowrance, J.: Computer-Mediated Collaborative Reasoning and Intelligence Analysis. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Weinberger, A., Fischer, F.: A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Educ. 46, 71–95 (2006)CrossRefGoogle Scholar
  27. 27.
    Pfister, H., Wessner, M., Holmer, T., Steinmetz, R.: Negotiating about Shared Knowledge in a Cooperative Learning Environment. In: Proc. of the CSCL Conf., USA, pp. 454–457 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • María Paula González
    • 1
    • 2
  • Carlos Iván Chesñevar
    • 1
    • 2
  • Cesar A. Collazos
    • 3
  • Guillermo R. Simari
    • 2
  1. 1.National Council of Scientific and Technical Research (CONICET)Argentina
  2. 2.Department of Computer Science and Engineering – Universidad Nacional del Sur, Av Alem 1253 – 8000 Bahía BlancaArgentina
  3. 3.Department of Systems - Universidad del Cauca, FIET-Sector Tulcan, PopayánColombia

Personalised recommendations