Pharmacology of Neurotransmitter Release pp 261-288

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 184)

Presynaptic Metabotropic Receptors for Acetylcholine and Adrenaline/Noradrenaline

  • Ralf Gilsbach
  • Lutz Hein

Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline were first described more than three decades ago. Molecular cloning has resulted in the identification of five G protein-coupled muscarinic receptors (M1 – M5) which mediate the biological effects of acetylcholine. Nine adrenoceptors (α1ABD2ABC123) transmit adrenaline/noradrenaline signals between cells. The lack of sufficiently subtype-selective ligands has prevented identification of the physiological role and therapeutic potential of these receptor subtypes for a long time. Recently, mouse lines with targeted deletions for all muscarinic and adrenoceptor genes have been generated. This review summarizes the results from these gene-targeting studies with particular emphasis on presynaptic auto- and heteroreceptor functions of muscarinic and adrenergic receptors. Specific knowledge about the function of receptor subtypes will enhance our understanding of the physiological role of the cholinergic and adrenergic nervous system and open new avenues for subtype-selective therapeutic strategies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L (1999) Abnormal regulation of the sympathetic nervous system in α2A -adrenergic receptor knockout mice. Mol Pharmacol 56:154-61PubMedGoogle Scholar
  2. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nature Neurosci 6:51-8PubMedGoogle Scholar
  3. Aoki C, Go CG, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of α2A adrenergic receptor-like immunoreactivity. Brain Res 650:181-204PubMedGoogle Scholar
  4. Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 24:334-44PubMedGoogle Scholar
  5. Arch JR (2002) β3 -adrenoceptor agonists:potential, pitfalls and progress. Eur J Pharmacol 440:99-107PubMedGoogle Scholar
  6. Arner P (2005) Human fat cell lipolysis:biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 19:471-82PubMedGoogle Scholar
  7. Auclair A, Cotecchia S, Glowinski J, Tassin JP (2002) D-amphetamine fails to increase extracellular dopamine levels in mice lacking α1B -adrenergic receptors:relationship between functional and nonfunctional dopamine release. J Neurosci 22:9150-4PubMedGoogle Scholar
  8. Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP (2004) 5-HT2A and α1B -adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci 20:3073-84PubMedGoogle Scholar
  9. Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 99:11452-7PubMedGoogle Scholar
  10. Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM, Levey AI (2001) M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol Cell Neurosci 18:512-24PubMedGoogle Scholar
  11. Bernardini N, Roza C, Sauer SK, Gomeza J, Wess J, Reeh PW (2002) Muscarinic M2 receptors on peripheral nerve endings:a molecular target of antinociception. J Neurosci 22: RC229.PubMedGoogle Scholar
  12. Bjorklund M, Sirvio J, Sallinen J, Scheinin M, Kobilka BK, Riekkinen P, Jr. (1999) α2C adrenoceptor overexpression disrupts execution of spatial and non-spatial search patterns. Neuroscience 88:1187-98PubMedGoogle Scholar
  13. Bjorklund M, Sirvio J, Riekkinen M, Sallinen J, Scheinin M, Riekkinen P, Jr. (2000) Overexpression of α2C -adrenoceptors impairs water maze navigation. Neuroscience 95:481-7PubMedGoogle Scholar
  14. Bjorklund M, Siverina I, Heikkinen T, Tanila H, Sallinen J, Scheinin M, Riekkinen P, Jr. (2001) Spatial working memory improvement by an α2C -adrenoceptor agonist dexmedetomidine is not mediated through α2C -adrenoceptor. Prog Neuropsychopharmacol Biol Psychiatry 25:1539-54PubMedGoogle Scholar
  15. Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43-99PubMedGoogle Scholar
  16. Brede M, Wiesmann F, Jahns R, Hadamek K, Arnolt C, Neubauer S, Lohse MJ, Hein L (2002) Feedback inhibition of catecholamine release by two different α2 -adrenoceptor subtypes prevents progression of heart failure. Circulation 106:2491-6PubMedGoogle Scholar
  17. Brede M, Nagy G, Philipp M, Sorensen JB, Lohse MJ, Hein L (2003) Differential control of adrenal and sympathetic catecholamine release by α2 -adrenoceptor subtypes. Mol Endocrinol 17:1640-6.PubMedGoogle Scholar
  18. Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651-90PubMedGoogle Scholar
  19. Brum PC, Kosek J, Patterson A, Bernstein D, Kobilka B (2002) Abnormal cardiac function associated with sympathetic nervous system hyperactivity in mice. Am J Physiol Heart Circ Physiol 283:H1838-45PubMedGoogle Scholar
  20. B ücheler M, Hadamek K, Hein L (2002) Two α2 -adrenergic receptor subtypes, α2A and α2C , inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819-26Google Scholar
  21. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Jr., Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121-36PubMedGoogle Scholar
  22. Bymaster FP, Carter PA, Yamada M, Gomeza J, Wess J, Hamilton SE, Nathanson NM, McKinzie DL, Felder CC (2003a) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. The Eur J Neurosci 17:1403-10Google Scholar
  23. Bymaster FP, McKinzie DL, Felder CC, Wess J (2003b) Use of M1 -M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437-42Google Scholar
  24. Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279-90PubMedGoogle Scholar
  25. Caulfield MP, Robbins J, Higashida H, Brown DA (1993) Postsynaptic actions of acetylcholine:the coupling of muscarinic receptor subtypes to neuronal ion channels. Progr Brain Res 98:293-301Google Scholar
  26. Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S (1997) Decreased blood pressure response in mice deficient of the α1B -adrenergic receptor. Proc Natl Acad Sci USA 94:11589-94PubMedGoogle Scholar
  27. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820-9PubMedGoogle Scholar
  28. Chen Q, Takahashi S, Zhong S, Hosoda C, Zheng HY, Ogushi T, Fujimura T, Ohta N, Tanoue A, Tsujimoto G, Kitamura T (2005) Function of the lower urinary tract in mice lacking α1D adrenoceptor. J Urol 174:370-4PubMedGoogle Scholar
  29. Chen ZJ, Minneman KP (2005) Recent progress in α1 -adrenergic receptor research. Acta Pharmacol Sin 26:1281-7PubMedGoogle Scholar
  30. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK (1999) Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem 274:16694-700PubMedGoogle Scholar
  31. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, Wiltse C, Wright TJ (2003) Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 5:659-67PubMedGoogle Scholar
  32. Cussac D, Schaak S, Gales C, Flordellis C, Denis C, Paris H (2001) α2B -adrenergic receptors activate MAPK and modulate the proliferation of primary cultured proximal tubule cells. Am J Physiol Renal Physiol 8:8Google Scholar
  33. Day HE, Campeau S, Watson SJ, Jr., Akil H (1997) Distribution of α1A -, α1B - and α1D -adrenergic receptor mRNA in the rat brain and spinal cord. Journal of chemical neuroanatomy 13:115-39PubMedGoogle Scholar
  34. Dennedy MC, Houlihan DD, McMillan H, Morrison JJ (2002) β2 - and β3 -adrenoreceptor ago- nists:human myometrial selectivity and effects on umbilical artery tone. Am J Obstet Gynecol 187:641-7PubMedGoogle Scholar
  35. Drago J, McColl CD, Horne MK, Finkelstein DI, Ross SA (2003) Neuronal nicotinic receptors:insights gained from gene knockout and knockin mutant mice. Cell Mol Life Sci 60:1267-80PubMedGoogle Scholar
  36. Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP (2002) α1B adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22:2873-24PubMedGoogle Scholar
  37. Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219-33PubMedGoogle Scholar
  38. Eglen RM, Nahorski SR (2000) The muscarinic M5 receptor:a silent or emerging subtype? Br J Pharmacol 130:13-21PubMedGoogle Scholar
  39. Fagerholm V, Philipp M, Hein L, Scheinin M (2004) [Ethyl-3 H]RS-79948-197 α2 -adrenoceptor autoradiography validation in α2 -adrenoceptor knockout mice. Eur J Pharmacol 497:301-9PubMedGoogle Scholar
  40. Fairbanks CA, Wilcox GL (1999) Spinal antinociceptive synergism between morphine and cloni- dine persists in mice made acutely or chronically tolerant to morphine. J Pharmacol Exp Ther 288:1107-16PubMedGoogle Scholar
  41. Fink-Jensen A, Fedorova I, Wortwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91-6PubMedGoogle Scholar
  42. Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J (2002) Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33:615-24PubMedGoogle Scholar
  43. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus:new evidence of anatomical and physiological specificity. Physiol Rev 63:844-914PubMedGoogle Scholar
  44. Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J (2006a) Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metabol 4:363-75Google Scholar
  45. Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C, Heard T, Wess J (2006b) A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metabol 3:449-61Google Scholar
  46. Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98:15312-17PubMedGoogle Scholar
  47. Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999a) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692-7Google Scholar
  48. Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J (1999b) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483-8Google Scholar
  49. Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68:2457-66PubMedGoogle Scholar
  50. Guimar ães S, Moura D (2001) Vascular adrenoceptors:an update. Pharmacol Rev 53:319-56Google Scholar
  51. Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM (1997) Disruption of the M1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94:13311-16PubMedGoogle Scholar
  52. Harasawa I, Honda K, Tanoue A, Shinoura H, Ishida Y, Okamura H, Murao N, Tsujimoto G, Higa K, Kamiya HO, Takano Y (2003) Responses to noxious stimuli in mice lacking α1D adrenergic receptors. Neuroreport 14:1857-60PubMedGoogle Scholar
  53. Hardouin SN, Richmond KN, Zimmerman A, Hamilton SE, Feigl EO, Nathanson NM (2002) Altered cardiovascular responses in mice lacking the M1 muscarinic acetylcholine receptor. J Exp Pharmacol Ther 301:129-37Google Scholar
  54. Hein L (2001) Transgenic models of α2 -adrenergic receptor subtype function. Rev Physiol Biochem Pharmacol 142:161-85PubMedGoogle Scholar
  55. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct α2 -adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181-4PubMedGoogle Scholar
  56. Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM (1997) Assessment of the role of α2 -adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122:1339-44PubMedGoogle Scholar
  57. Janumpalli S, Butler LS, MacMillan LB, Limbird LE, McNamara JO (1998) A point mutation (D79N) of the α2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J Neurosci 18:2004-8PubMedGoogle Scholar
  58. Khurana S, Yamada M, Wess J, Kennedy RH, Raufman JP (2005) Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M3 receptor-dependent. Eur J Pharmacol 517:103-10PubMedGoogle Scholar
  59. Kintsurashvili E, Gavras I, Johns C, Gavras H (2001) Effects of antisense oligodeoxynucleotide targeting of the α2B -adrenergic receptor messenger RNA in the central nervous system. Hypertension 38:1075-80PubMedGoogle Scholar
  60. Kitazawa T, Hashiba K, Cao J, Unno T, Komori S, Yamada M, Wess J, Taneike T (2007) Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility:studies with muscarinic receptor knockout mice. Eur J Pharmacol 554:212-22PubMedGoogle Scholar
  61. Knauber J, Muller WE (2000) Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the α1B -adrenoceptor. Eur Neuropsychopharmacol 10:423-7PubMedGoogle Scholar
  62. Koshimizu TA, Tanoue A, Tsujimoto G (2006) Clinical implications from studies of α1 adrenergic receptor knockout mice. Biochem Pharmacol.Google Scholar
  63. Kubista H, Boehm S (2006) Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 112:213-42PubMedGoogle Scholar
  64. Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant α2A -adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 94:9950-5PubMedGoogle Scholar
  65. Langer SZ (1997) 25 years since the discovery of presynaptic receptors:present knowledge and future perspectives. Trends Pharmacol Sci 18:95-9PubMedGoogle Scholar
  66. Langer SZ, Duval N, Massingham R (1985) Pharmacologic and therapeutic significance of αadrenoceptor subtypes. J Cardiovasc Pharmacol 7:S1-8PubMedGoogle Scholar
  67. Levey AI (1993) Immunological localization of M1 -M5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441-8PubMedGoogle Scholar
  68. Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA (1994) Localization of muscarinic M3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63:207-21PubMedGoogle Scholar
  69. Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse α2C -adrenoceptor homolog. Mol Pharmacol 48:48-55PubMedGoogle Scholar
  70. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking α2 -adrenergic receptor subtypes b and c. Science 273:803-5PubMedGoogle Scholar
  71. Ma D, Hossain M, Rajakumaraswamy N, Arshad M, Sanders RD, Franks NP, Maze M (2004) Dexmedetomidine produces its neuroprotective effect via the α2A -adrenoceptor subtype. Eur J Pharmacol 502:87-97PubMedGoogle Scholar
  72. MacDonald E, Scheinin M (1995) Distribution and pharmacology of α2 -adrenoceptors in the central nervous system. J Physiol Pharmacol 46:241-58PubMedGoogle Scholar
  73. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the α2A -adrenergic receptor subtype. Science 273:801-3PubMedGoogle Scholar
  74. Makaritsis KP, Handy DE, Johns C, Kobilka B, Gavras I, Gavras H (1999a) Role of the α2B adrenergic receptor in the development of salt-induced hypertension. Hypertension 33:14-17Google Scholar
  75. Makaritsis KP, Johns C, Gavras I, Altman JD, Handy DE, Bresnahan MR, Gavras H (1999b) Sympathoinhibitory function of the α2A -adrenergic receptor subtype. Hypertension 34:403-7Google Scholar
  76. Makaritsis KP, Johns C, Gavras I, Gavras H (2000) Role of α2 -adrenergic receptor subtypes in the acute hypertensive response to hypertonic saline infusion in anephric mice. Hypertension 35:609-13PubMedGoogle Scholar
  77. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579-84PubMedGoogle Scholar
  78. McCune SK, Voigt MM, Hill JM (1993) Expression of multiple α adrenergic receptor subtype messenger RNAs in the adult rat brain. Neuroscience 57:143-51PubMedGoogle Scholar
  79. Michel MC, Vrydag W (2006) α1 -, α2 - and β-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 147 Suppl 2:S88-119Google Scholar
  80. Michelotti GA, Price DT, Schwinn DA (2000) α1 -adrenergic receptor regulation:basic science and clinical implications. Pharmacol Ther 88:281-309PubMedGoogle Scholar
  81. Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201-27PubMedGoogle Scholar
  82. Mishima K, Tanoue A, Tsuda M, Hasebe N, Fukue Y, Egashira N, Takano Y, Kamiya HO, Tsujimoto G, Iwasaki K, Fujiwara M (2004) Characteristics of behavioral abnormalities in α1D adrenoceptors deficient mice. Behav Brain Res 152:365-73PubMedGoogle Scholar
  83. Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampusdependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239-50PubMedGoogle Scholar
  84. Moura E, Afonso J, Hein L, Vieira-Coelho MA (2006) α2 -adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br J Pharmacol 149:1049-58PubMedGoogle Scholar
  85. Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA (2004) A distinct role for norepinephrine in memory retrieval. Cell 117:131-43PubMedGoogle Scholar
  86. Nicholas AP, Pieribone V, Hokfelt T (1993) Distributions of mRNAs for α2 adrenergic receptor subtypes in rat brain:an in situ hybridization study. J Comp Neurol 328:575-94PubMedGoogle Scholar
  87. Nicholas AP, Hokfelt T, Pieribone VA (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 17:245-55PubMedGoogle Scholar
  88. Niederhoffer N, Hein L, Starke K (2004) Modulation of the baroreceptor reflex by α2A - adrenoceptors:a study in α2A knockout mice. Br J Pharmacol 141:851-9PubMedGoogle Scholar
  89. Ordway GA, O’Donnell JM, Frazer A (1987) Effects of clenbuterol on central β1 and β2 adrenergic receptors of the rat. J Pharmacol Exp Ther 241:187-95PubMedGoogle Scholar
  90. Ordway GA, Gambarana C, Frazer A (1988) Quantitative autoradiography of central beta adrenoceptor subtypes:comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. J Pharmacol Exp Ther 247:379-89PubMedGoogle Scholar
  91. Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM (2002) Mice expressing the α1B -adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem 83:623-34PubMedGoogle Scholar
  92. Paris A, Philipp M, Tonner PH, Steinfath M, Lohse M, Scholz J, Hein L (2003) Activation of α2B -adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiol 99:889-95Google Scholar
  93. Paris A, Mantz J, Tonner PH, Hein L, Brede M, Gressens P (2006) The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the α2A -adrenoceptor subtype. Anesth Analg 102:456-61PubMedGoogle Scholar
  94. Philipp M, Brede M, Hein L (2002a) Physiological significance of α2A -adrenergic receptor subtype diversity:one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283:R287-95Google Scholar
  95. Philipp M, Brede ME, Hadamek K, Gessler M, Lohse MJ, Hein L (2002b) Placental α2 - adrenoceptors control vascular development at the interface between mother and embryo. Nat Genet 31:311-15Google Scholar
  96. Philipp M, Hein L (2004) Adrenergic receptor knockout mice:distinct functions of 9 receptor subtypes. Pharmacol Ther 101:65-74PubMedGoogle Scholar
  97. Piascik MT, Perez DM (2001) α1 -adrenergic receptors:new insights and directions. J Exp Pharmacol Ther 298:403-10Google Scholar
  98. Pieribone VA, Nicholas AP, Dagerlind A, Hokfelt T (1994) Distribution of α1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci 14:4252-68PubMedGoogle Scholar
  99. Porter AC, Bymaster FP, DeLapp NW, Yamada M, Wess J, Hamilton SE, Nathanson NM, Felder CC (2002) M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res 944:82-9PubMedGoogle Scholar
  100. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK (1999) Cardiovascular and metabolic alterations in mice lacking both β1 - and β2 -adrenergic receptors. J Biol Chem 274:16701-8PubMedGoogle Scholar
  101. Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP, Jr., Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse β1 -adrenergic receptor gene:developmental and cardiovascular effects. Proc Natl Acad Sci USA 93:7375-80PubMedGoogle Scholar
  102. Rokosh DG, Simpson PC (2002) Knockout of the α1A/C -adrenergic receptor subtype:the α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 99:9474-9PubMedGoogle Scholar
  103. Rosin DL, Talley EM, Lee A, Stornetta RL, Gaylinn BD, Guyenet PG, Lynch KR (1996) Distribution of α2C -adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372:135-65PubMedGoogle Scholar
  104. Sadalge A, Coughlin L, Fu H, Wang B, Valladares O, Valentino R, Blendy JA (2003) α1D Adrenoceptor signaling is required for stimulus induced locomotor activity. Mol Psychiatry 8:664-72PubMedGoogle Scholar
  105. Salomon L, Lanteri C, Glowinski J, Tassin JP (2006) Behavioral sensitization to amphetamine results from an uncoupling between noradrenergic and serotonergic neurons. Proc Natl Acad Sci USA 103:7476-81PubMedGoogle Scholar
  106. Sawamura S, Kingery WS, Davies MF, Agashe GS, Clark JD, Kobilka BK, Hashimoto T, Maze M (2000) Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J Neurosci 20:9242-51PubMedGoogle Scholar
  107. Scheibner J, Trendelenburg AU, Hein L, Starke K (2001a) α2 -adrenoceptors modulating neuronal serotonin release:a study in α2 -adrenoceptor subtype-deficient mice. Br J Pharmacol 132:925-33Google Scholar
  108. Scheibner J, Trendelenburg AU, Hein L, Starke K (2001b) Stimulation frequency-noradrenaline release relationships examined in α2A -, α2B - and α2C -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 364:321-8Google Scholar
  109. Scheibner J, Trendelenburg AU, Hein L, Starke K, Blandizzi C (2002) α2 -adrenoceptors in the enteric nervous system:a study in α2A -adrenoceptor-deficient mice. Br J Pharmacol 135:697-704PubMedGoogle Scholar
  110. Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT, Jr. (1994) Distribution of α2 -adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 21:133-49PubMedGoogle Scholar
  111. Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the α2C -adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci 68:2277-85PubMedGoogle Scholar
  112. Schelb V, Gobel I, Khairallah L, Zhou H, Cox SL, Trendelenburg AU, Hein L, Starke K (2001) Postnatal development of presynaptic receptors that modulate noradrenaline release in mice. Naunyn Schmiedeberg’s Arch Pharmacol 364:359-71Google Scholar
  113. Shapiro MS, Loose MD, Hamilton SE, Nathanson NM, Gomeza J, Wess J, Hille B (1999) Assignment of muscarinic receptor subtypes mediating G-protein modulation of Ca2+ channels by using knockout mice. Proc Natl Acad Sci USA 96:10899-904PubMedGoogle Scholar
  114. Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals:a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325-95PubMedGoogle Scholar
  115. Slutsky I, Wess J, Gomeza J, Dudel J, Parnas I, Parnas H (2003) Use of knockout mice reveals involvement of M2 -muscarinic receptors in control of the kinetics of acetylcholine release. J Neurophysiol 89:1954-67PubMedGoogle Scholar
  116. Spreng M, Cotecchia S, Schenk F (2001) A behavioral study of α1B adrenergic receptor knockout mice:increased reaction to novelty and selectively reduced learning capacities. Neurobiology of learning and memory 75:214-29PubMedGoogle Scholar
  117. Starke K (2001) Presynaptic autoreceptors in the third decade:focus on α2 -adrenoceptors. J Neurochem 78:685-93PubMedGoogle Scholar
  118. Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864-89PubMedGoogle Scholar
  119. Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M2 and M4 receptor knockout mice:muscarinic receptor function in cardiac and smooth muscle in vitro. J Exp Pharmacol Ther 292:877-85Google Scholar
  120. Stephens GJ, Mochida S (2005) G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 563:765-76PubMedGoogle Scholar
  121. Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL (1997) The α2A adrenergic receptor subtype mediates spinal analgesia evoked by α2 agonists and is necessary for spinal adrenergicopioid synergy. J Neurosci 17:7157-65PubMedGoogle Scholar
  122. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the β3 -adrenergic receptor gene. J Biol Chem 270:29483-92PubMedGoogle Scholar
  123. Szot P, Lester M, Laughlin ML, Palmiter RD, Liles LC, Weinshenker D (2004) The anticonvulsant and proconvulsant effects of α2 -adrenoreceptor agonists are mediated by distinct populations of α2A -adrenoreceptors. Neuroscience 126:795-803PubMedGoogle Scholar
  124. Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR (1996) Distribution of α2A -adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372:111-34PubMedGoogle Scholar
  125. Tan CM, Wilson MH, MacMillan LB, Kobilka BK, Limbird LE (2002) Heterozygous α2A - adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc Natl Acad Sci USA 99:12471-6PubMedGoogle Scholar
  126. Tanoue A, Koba M, Miyawaki S, Koshimizu TA, Hosoda C, Oshikawa S, Tsujimoto G (2002) Role of the α1D -adrenergic receptor in the development of salt-induced hypertension. Hypertension 40:101-6PubMedGoogle Scholar
  127. Tanoue A, Koshimizu TA, Shibata K, Nasa Y, Takeo S, Tsujimoto G (2003) Insights into α1 adrenoceptor function in health and disease from transgenic animal studies. Trends Endocrinol Metab 14:107-13PubMedGoogle Scholar
  128. Thomsen M, Woldbye DP, Wortwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25:8141-9PubMedGoogle Scholar
  129. Trendelenburg AU, Hein L, Gaiser EG, Starke K (1999) Occurrence, pharmacology and function of presynaptic α2 -autoreceptors in α2A/D -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 360:540-51Google Scholar
  130. Trendelenburg AU, Cox SL, Schelb V, Klebroff W, Khairallah L, Starke K (2000) Modulation of 3 H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and beta-adrenoceptors in mouse tissues. Br J Pharmacol 130:321-30PubMedGoogle Scholar
  131. Trendelenburg AU, Klebroff W, Hein L, Starke K (2001a) A study of presynaptic α2 -autoreceptors in α2A/D -, α2B - and α2C -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 364:17-30.Google Scholar
  132. Trendelenburg AU, Norenberg W, Hein L, Meyer A, Starke K (2001b) α2 -adrenoceptor-mediated inhibition of cultured sympathetic neurons:changes in α2A/D -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 363:110-19Google Scholar
  133. Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J (2003a) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release:a study with M2 and M4 -receptor-deficient mice. Br J Pharmacol 138:469-80Google Scholar
  134. Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003b) All three α2 adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn Schmiedeberg’s Arch Pharmacol 368:504-12Google Scholar
  135. Trendelenburg AU, Meyer A, Wess J, Starke K (2005) Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice. Br J Pharmacol 145:1153-9PubMedGoogle Scholar
  136. Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2 , M4 and M2 /M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673-9PubMedGoogle Scholar
  137. Uhlen S, Lindblom J, Johnson A, Wikberg JE (1997) Autoradiographic studies of central α2A and α2C -adrenoceptors in the rat using [3 H]MK912 and subtype-selective drugs. Brain Res 770:261-6PubMedGoogle Scholar
  138. Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H, Yamada M, Wess J, Komori S (2005) M2 and M3 muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol 146:98-108PubMedGoogle Scholar
  139. Unno T, Matsuyama H, Izumi Y, Yamada M, Wess J, Komori S (2006) Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. Br J Pharmacol 149:1022-30PubMedGoogle Scholar
  140. Vonend O, Habbel S, Stegbauer J, Roth J, Hein L, Rump LC (2007) α2A -adrenoceptors regulate sympathetic transmitter release in mice kidneys. Br J Pharmacol 150:121-7PubMedGoogle Scholar
  141. Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69-99PubMedGoogle Scholar
  142. Wess J (2004) Muscarinic acetylcholine receptor knockout mice:novel phenotypes and clinical implications. Ann Rev Pharmacol Toxicol 44:423-50Google Scholar
  143. Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron 24:715-26PubMedGoogle Scholar
  144. Wolfe BB, Yasuda RP (1995) Development of selective antisera for muscarinic cholinergic receptor subtypes. Ann NY Acad Sci 757:186-93PubMedGoogle Scholar
  145. Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204-12PubMedGoogle Scholar
  146. Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-specific α1 - and β-adrenoceptor signaling in the heart. Trends Pharmacol Sci 27:330-7PubMedGoogle Scholar
  147. Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol 289:G521-9Google Scholar
  148. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001a) Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98:14096-101Google Scholar
  149. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J (2001b) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207-12Google Scholar
  150. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors:distribution of M4 and M5 receptors in rat brain. Mol Pharmacol 43:149-57PubMedGoogle Scholar
  151. Zhang C, Davies MF, Guo TZ, Maze M (1999) The analgesic action of nitrous oxide is dependent on the release of norepinephrine in the dorsal horn of the spinal cord. Anesthesiology 91:401-7Google Scholar
  152. Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002a) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22:1709-17Google Scholar
  153. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002b) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1 -M5 muscarinic receptor knock-out mice. J Neurosci 22:6347-52Google Scholar
  154. Zhou H, Meyer A, Starke K, Gomeza J, Wess J, Trendelenburg AU (2002) Heterogeneity of release-inhibiting muscarinic autoreceptors in heart atria and urinary bladder:a study with M2 and M4 -receptor-deficient mice. Naunyn-Schmiedeberg’s Arch Pharmacol 365:112-22Google Scholar
  155. Zhu QM, Lesnick JD, Jasper JR, MacLennan SJ, Dillon MP, Eglen RM, Blue DR, Jr. (1999) Cardiovascular effects of rilmenidine, moxonidine and clonidine in conscious wild-type and D79N α2A -adrenoceptor transgenic mice. Br J Pharmacol 126:1522-30PubMedGoogle Scholar
  156. Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM (2000) Overexpression of the α1B -adrenergic receptor causes apoptotic neurodegeneration:multiple system atrophy. Nature Med 6:1388-94PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ralf Gilsbach
    • 1
  • Lutz Hein
    • 1
  1. 1.Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany

Personalised recommendations