Core Proteins of the Secretory Machinery

  • Thorsten Lang
  • Reinhard Jahn
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 184)

Members of the Rab, SM- and SNARE-protein families play key roles in all intracellular membrane trafficking steps. While SM- and SNARE-proteins become directly involved in the fusion reaction at a late stage, Rabs and their effectors mediate upstream steps such as vesicle budding, delivery, tethering, and transport. Exocytosis of synaptic vesicles and regulated secretory granules are among the best-studied fusion events and involve the Rab3 isoforms Rab3A-D, the SM protein munc18-1, and the SNAREs syntaxin 1A, SNAP-25, and synaptobrevin 2. According to the current view, syntaxin 1A and SNAP-25 at the presynaptic membrane form a complex with synaptic vesicle-associated synaptobrevin 2. As complex formation proceeds, the opposed membranes are pulled tightly together, enforcing the fusion reaction. Munc18-1 is essential for regulated exocytosis and interacts with syntaxin 1A alone or with SNARE complexes, suggesting a role for munc18-1 in controlling the SNARE-assembly reaction. Compared to other intracellular fusion steps, special adaptations evolved in the synapse to allow for the tight regulation and high membrane turnover rates required for synaptic transmission. Synaptic vesicle fusion is triggered by the intracellular second messenger calcium, with members of the synaptotagmin protein family being prime candidates for linking calcium influx to fusion in the fast phase of exocytosis. To compensate for the massive incorporation of synaptic vesicles into the plasma membrane during exocytosis, special adaptations to endocytic mechanisms have evolved at the synapse to allow for efficient vesicle recycling.


Synaptic Vesicle Snare Complex Secretory Machinery Synaptic Vesicle Exocytosis Clathrin Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99:6358-63CrossRefPubMedGoogle Scholar
  2. Becher A, Drenckhahn A, Pahner I, Margittai M, Jahn R, Ahnert-Hilger G (1999) The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J Neurosci 19:1922-31PubMedGoogle Scholar
  3. Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, S üdhof T, Bruns D (2005) v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 24:2114-26CrossRefPubMedGoogle Scholar
  4. Bracher A, Weissenhorn W (2002) Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J 21:6114-24CrossRefPubMedGoogle Scholar
  5. Breckenridge LJ, Almers W (1987) Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci USA 84:1945-49CrossRefPubMedGoogle Scholar
  6. Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys 38:1-47CrossRefPubMedGoogle Scholar
  7. Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499-524CrossRefPubMedGoogle Scholar
  8. Ciufo LF, Barclay JW, Burgoyne RD, Morgan A (2005) Munc18-1 regulates early and late stages of exocytosis via syntaxin-independent protein interactions. Mol Biol Cell. 16:470-82CrossRefPubMedGoogle Scholar
  9. Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498-508CrossRefPubMedGoogle Scholar
  10. Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659-65CrossRefPubMedGoogle Scholar
  11. Craxton M (2004) Synaptotagmin gene content of the sequenced genomes. BMC Genomics 5:43CrossRefPubMedGoogle Scholar
  12. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-7CrossRefPubMedGoogle Scholar
  13. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415-22CrossRefPubMedGoogle Scholar
  14. Dulubova I, Khvotchev M, Liu S, Huryeva I, S üdhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA. 2007 Feb 14; 104, 2697-702Google Scholar
  15. Edeling MA, Smith C, Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7:32-44CrossRefPubMedGoogle Scholar
  16. Fasshauer D, Sutton RB, Brunger AT, Jahn R. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA. 95:15781-6CrossRefPubMedGoogle Scholar
  17. Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453-5CrossRefPubMedGoogle Scholar
  18. Fesce R, Grohovaz F, Valtorta F, Meldolesi J (1994) Neurotransmitter release: fusion or ‘kiss-andrun’? Trends Cell Biol 4:1-4CrossRefPubMedGoogle Scholar
  19. Gallwitz D, Jahn R. (2003) The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 28:113-16CrossRefPubMedGoogle Scholar
  20. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821-7CrossRefPubMedGoogle Scholar
  21. Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519-29CrossRefPubMedGoogle Scholar
  22. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:493-517PubMedGoogle Scholar
  23. Jahn R, Scheller RH. (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631-43CrossRefPubMedGoogle Scholar
  24. Maldonado-Baez L, Wendland B (2006) Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol 16:505-13CrossRefPubMedGoogle Scholar
  25. Marz KE, Hanson PI (2002) Sealed with a twist: complexin and the synaptic SNARE complex. Trends Neurosci 25:381-3CrossRefPubMedGoogle Scholar
  26. McEwen JM, Madison JM, Dybbs M, Kaplan JM (2006) Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13. Neuron 51:303-15CrossRefPubMedGoogle Scholar
  27. Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355-62CrossRefPubMedGoogle Scholar
  28. Peng R, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157:645-55CrossRefPubMedGoogle Scholar
  29. Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673-6CrossRefPubMedGoogle Scholar
  30. Rizo J, Chen X, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16:339-50CrossRefPubMedGoogle Scholar
  31. Rizo J, S üdhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3:641-53PubMedGoogle Scholar
  32. Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57-69CrossRefPubMedGoogle Scholar
  33. Roos J, Kelly RB (1999) The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr Biol 9:1411-14CrossRefPubMedGoogle Scholar
  34. Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol 553:345-55CrossRefPubMedGoogle Scholar
  35. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717-66PubMedGoogle Scholar
  36. Schl üter OM, Schmitz F, Jahn R, Rosenmund C, Sudhof TC (2004) A complete genetic analysis of neuronal Rab3 function. J Neurosci 24:6629-37CrossRefGoogle Scholar
  37. Schultz J, Doerks T, Ponting CP, Copley RR, Bork P (2000) More than 1,000 putative new human signalling proteins revealed by EST data mining. Nat Genet 25:201-04CrossRefPubMedGoogle Scholar
  38. Sch ütz D, Zilly F, Lang T, Jahn R, Bruns D (2005) A dual function for Munc-18 in exocytosis of PC12 cells. Eur J Neurosci 21:2419-32CrossRefGoogle Scholar
  39. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183-95CrossRefPubMedGoogle Scholar
  40. Sorensen JB, Wiederhold K, M üller EM, Milosevic I, Nagy G, de Groot BL, Grubm üller H, Fasshauer D (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955-66CrossRefPubMedGoogle Scholar
  41. Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E. (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75-86CrossRefPubMedGoogle Scholar
  42. S üdhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509-47CrossRefGoogle Scholar
  43. S üdhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629-32CrossRefGoogle Scholar
  44. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347-53CrossRefPubMedGoogle Scholar
  45. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubm üller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831-46CrossRefPubMedGoogle Scholar
  46. Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385-91CrossRefPubMedGoogle Scholar
  47. Tang J, Maximov A, Shin OH, Dai H, Rizo J, S üdhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175-87CrossRefPubMedGoogle Scholar
  48. Toonen RF, Verhage M (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol. 13:177-86CrossRefPubMedGoogle Scholar
  49. Ungermann C, Langosch D (2005) Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 118:3819-28CrossRefPubMedGoogle Scholar
  50. Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, S üdhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31:581-91CrossRefPubMedGoogle Scholar
  51. Washington NL, Ward S (2006) FER-1 regulates Ca2+ - mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 119:2552-62CrossRefPubMedGoogle Scholar
  52. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935-9CrossRefPubMedGoogle Scholar
  53. Yoon TY, Okumus B, Zhang F, Shin YK, Ha T (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci USA 103:19731-6CrossRefPubMedGoogle Scholar
  54. Zilly FE, Sorensen JB, Jahn R, Lang T (2006) Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 4:e330CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thorsten Lang
    • 1
  • Reinhard Jahn
    • 1
  1. 1.Department of NeurobiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations