Pharmacology of Neurotransmitter Release pp 339-372 | Cite as
Presynaptic Adenosine and P2Y Receptors
Chapter
- 18 Citations
- 2.8k Downloads
Adenine-based purines, such as adenosine and ATP, are ubiquitous molecules that, in addition to their roles in metabolism, act as modulators of neurotransmitter release through activation of presynaptic P1 purinoceptors or adenosine receptors (activated by adenosine) and P2 receptors (activated by nucleotides). Of the latter, the P2Y receptors are G protein-coupled, whereas the P2X receptors are ligand-gated ion channels and not covered in this review.
Keywords
Adenosine Receptor Neurotransmitter Release Noradrenaline Release Adenosine Receptor Agonist Endogenous Adenosine
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Abbracchio MP, Burnstock G, Boeynaems JM et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281-341PubMedCrossRefGoogle Scholar
- Abe M, Endoh T, Suzuki T (2003) Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 138:1535-43PubMedCrossRefGoogle Scholar
- Akasu T, Hirai K, Koketsu K (1982) Modulatory effect of ATP on the release of acetylcholine from presynaptic nerve terminals in bullfrog sympathetic ganglia. Kurume Med J 29:75-83PubMedGoogle Scholar
- Allgaier C, Hertting G, K ügelgen OV (1987) The adenosine receptor-mediated inhibition of noradrenaline release possibly involves an N-protein and is increased by α2 -autoreceptor blockade. Br J Pharmacol 90:403-12PubMedGoogle Scholar
- Allgaier C, Greber R, Hertting G (1991) Studies on the interaction between presynaptic α2 adrenoceptors and adenosine A1 receptors located on noradrenergic nerve terminals. NaunynSchmiedberg’s Arch Pharmacol 344:187-92CrossRefGoogle Scholar
- Ambrosio AF, Malva JO, Carvalho AP et al (1997) Inhibition of N-,P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. Eur J Pharmacol 340:301-10PubMedCrossRefGoogle Scholar
- Auchampach JA, Jin X, Wan TC et al (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846-60PubMedGoogle Scholar
- Baldwin SA, Mackey JR, Cass CE et al (1999) Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today 5:216-24PubMedCrossRefGoogle Scholar
- Barajas-Lopez C, M üller MJ, Prieto-Gomez B et al (1995) ATP inhibits the synaptic release of acetylcholine in submucosal neurons. J Pharmacol Exp Ther 274:1238-45PubMedGoogle Scholar
- Barraco RA, Clough-Helfman C, Goodwin BP et al (1995) Evidence for presynaptic adenosine A2a receptors associated with norepinephrine release and their desensitization in the rat nucleus tractus solitarius. J Neurochem 65:1604-11PubMedCrossRefGoogle Scholar
- Barraco RA, Helfman CC, Anderson GF (1996) Augmented release of serotonin by adenosine A2a receptor activation and desensitization by CGS 21680 in the rat nucleus tractus solitarius. Brain Res 733:155-61PubMedCrossRefGoogle Scholar
- Baxter RL, Vega-Riveroll LJ, Deuchars J et al (2005) A2A adenosine receptors are located on presynaptic motor nerve terminals in the mouse. Synapse 57:229-34PubMedCrossRefGoogle Scholar
- Bennett GC, Boarder MR (2000) The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices. Br J Pharmacol 131:617-23PubMedCrossRefGoogle Scholar
- Blackmer T, Larsen EC, Takahashi M et al (2001) G protein βγ subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream Ca2+ entry. Science 292:293-7PubMedCrossRefGoogle Scholar
- Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959-69PubMedCrossRefGoogle Scholar
- Bohmann C, von K ügelgen I, Rump LC (1997) P2-receptor modulation of noradrenergic neurotransmission in rat kidney. Br J Pharmacol 121:1255-62PubMedCrossRefGoogle Scholar
- Bowker HM, Chapman AG (1986) Adenosine analogues. The temperature-dependence of the anticonvulsant effect and inhibition of 3 H-D-aspartate release. Biochem Pharmacol 35:2949-53PubMedCrossRefGoogle Scholar
- Boyer JL, Mohanram A, Camaioni E et al (1998) Competitive and selective antagonism of P2Y1 receptors by N6 -methyl 2′ -deoxyadenosine 3′ , 5′ -biphosphate. Br J Pharmacol 124:1-3PubMedCrossRefGoogle Scholar
- Brackett LE, Daly JW (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol 47:801-14PubMedCrossRefGoogle Scholar
- Brown DA, Pilippov AK, Branard EA (2000) Inhibition of potassium and calcium currents in neurons by molecularly-defined P2Y receptors. J Auton Nerv Sys 81:31-6CrossRefGoogle Scholar
- Brown SJ, James S, Reddington M et al (1990) Both A1 and A2a purine receptors regulate striatal acetylcholine release. J Neurochem 55:31-8PubMedCrossRefGoogle Scholar
- Bucher B, Corriu C, Stoclet JC (1992) Prejunctional opioid µ-receptors and adenosine A1 receptors on the sympathetic nerve endings of the rat-tail artery interact with the α2 adrenoceptors. Naunyn-Schmiedberg’s Arch Pharmacol 345:37-43Google Scholar
- Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239-48PubMedCrossRefGoogle Scholar
- Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Bolis L, Straub RW (eds) Cell Membrane Receptors for Drugs and Hormones. Raven Press, New York, pp 107-18Google Scholar
- Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47-52PubMedCrossRefGoogle Scholar
- Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433-40PubMedGoogle Scholar
- Castillo-Melendez M, Krstew E, Lawrence AJ et al (1994) Presynaptic adenosine A2a receptors on soma and central terminals of rat vagal afferent neurons. Brain Res 652:137-44PubMedCrossRefGoogle Scholar
- Ciruela F, Saura C, Canela EI et al (1996) Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett 380:219-23PubMedCrossRefGoogle Scholar
- Ciruela F, Escriche M, Burgue ño J et al (2001) Metabotropic glutamate 1α and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 276:18345-51PubMedCrossRefGoogle Scholar
- Ciruela F, Casad ó V, Rodrigues RJ et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1 -A2A receptor heteromers. J Neurosci 26:2080-7PubMedCrossRefGoogle Scholar
- Clanachan AS, Johns A, Paton D M (1977) Presynaptic inhibitory actions of adenine nucleotides and adenosine on the neurotransmission in the rat vas deferens. Neuroscience 2:597-602PubMedCrossRefGoogle Scholar
- Communi D, Govaerts C, Parmentier M et al (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969-73PubMedCrossRefGoogle Scholar
- Corradetti R, Lo Conte G, Moroni F et al (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104:19-26PubMedCrossRefGoogle Scholar
- Correia-de-Sá P, Sebastião AM, Ribeiro JA (1991) Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve ending of the rat. Br J Pharmacol 103:1614-20PubMedGoogle Scholar
- Correia-de-Sá P, Ribeiro JA (1994a) Potentiation by tonic A2a -adenosine receptor activation of CGRP-facilitated [3 H]-ACh release from rat motor nerve endings. Br J Pharmacol 111:582-8Google Scholar
- Correia-de-Sá P, Ribeiro JA (1994b) Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. Eur J Pharmacol 271:349-55CrossRefGoogle Scholar
- Correia-de-Sá P, Ribeiro JA (1994c) Evidence that presynaptic A2A -adenosine receptor of the motor nerve endings is positively coupled to adenylate cyclase. Naunyn-Schmiedberg’s Arch Pharmacol 350:514-22Google Scholar
- Correia-de-Sá P, Timóteo MA, Ribeiro JA (1996) Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J Neurophysiol 76:3910-19PubMedGoogle Scholar
- Correia-de-Sá P, Timóteo MA, Ribeiro JA (2001) Synergism between A2A -adenosine receptor activation and vasoactive intestinal peptide to facilitate [3 H]-acetylcholine release from the rat motor nerve terminals. Neurosci Lett 309:101-4PubMedCrossRefGoogle Scholar
- Correia-de-Sá P, Adaes S, Timóteo MA et al (2006) Fine-tuning modulation of myenteric motoneurons by endogenous adenosine: on the role of secreted adenosine deaminase. Auton Neurosci 126-127:211-24PubMedCrossRefGoogle Scholar
- Cox SL, Schelb V, Trendelenburg AU et al (2000) Enhancement of noradrenaline release by angiotensin II and bradykinin in mouse atria: evidence for cross talk between Gq/11 protein- and Gi/o protein-coupled receptors. Br J Pharmacol 129:1095-1102PubMedCrossRefGoogle Scholar
- Cunha RA, Milusheva E, Vizi ES et al (1994a) Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3 H]acetylcholine release from different areas of the rat hippocampus. J Neurochem 63:207-14Google Scholar
- Cunha RA, Ribeiro JA, Sebasti ão AM (1994b) Purinergic modulation of the evoked release of [3 H] acetylcholine from the hippocampus and cerebral cortex of the rat: role of the ectonucleotidases. Eur J Neurosci 6:33-42CrossRefGoogle Scholar
- Cunha RA, Sebasti ão AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channelling to adenosine A1 receptors. J Neurosci 18:1987-95PubMedGoogle Scholar
- Cunha RA, Ribeiro JA (2000a) Purinergic modulation of [3 H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39:1156-67CrossRefGoogle Scholar
- Cunha RA, Ribeiro JA (2000b) Adenosine A2A receptor facilitation of synaptic transmission in the CA1 area of the rat hippocampus requires protein kinase C but not protein kinase A activation. Neurosci Lett 289:127-30CrossRefGoogle Scholar
- Currie KP, Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16:1027-36PubMedCrossRefGoogle Scholar
- Decking UKM, Schlieper G, Kroll K, Schrader J (1997) Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res 81:154-64PubMedGoogle Scholar
- De Lorenzo S, Veggetti M, Muchnik S et al (2006) Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction. Neuroscience. 142:71-85PubMedCrossRefGoogle Scholar
- Delmas P, Abogadie FC, Milligan G et al (1999) βγ Dimers derived from Go and Gi proteins contribute different components of adrenergic inhibition of Ca2+ channels in rat sympathetic neurons. J Physiol 518:23-36PubMedCrossRefGoogle Scholar
- Diniz C, Leal S, Gonçalves J (2003) Regional differences in the adenosine A2 receptor-mediated modulation of contractions in rat vas deferens. Eur J Pharmacol 460:191-9PubMedCrossRefGoogle Scholar
- Di ógenes MJ, Fernandes CC, Sebasti ão AM et al (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905-13CrossRefGoogle Scholar
- Diverse-Pierluissi M, Dunlap K, Westhead EW (1991) Multiple actions of extracellular ATP on calcium currents in cultured bovine chromaffin cells. Proc Natl Acad Sci USA 88:1261-5PubMedCrossRefGoogle Scholar
- Dixon AK, Gubitz AK, Sirinathsinghji DJ et al (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461-8PubMedGoogle Scholar
- Dixon AK, Widdowson L, Richardson PJ (1997) Desensitization of the adenosine A1 receptor by the A2A receptor in the rat striatum. J Neurochem 69:315-21PubMedCrossRefGoogle Scholar
- Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607-27PubMedCrossRefGoogle Scholar
- Dolphin AC, Archer ER (1983) An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci Lett 43:49-54PubMedCrossRefGoogle Scholar
- Dolphin AC, Forda SR, Scott RH (1986) Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol 373:47-61PubMedGoogle Scholar
- Duarte-Ara újo M, Nascimento C, Tim óteo MA et al (2004) Dual effects of adenosine on acetylcholine release from myenteric motoneurons are mediated by junctional facilitatory A2A and extrajunctional inhibitory A1 receptors. Br J Pharmacol 141:925-34CrossRefGoogle Scholar
- Dunwiddie TV, Fredholm BB (1984) Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus are different from receptors mediating cyclic AMP accumulation. Naunyn Schmiedeberg’s Arch Pharmacol 326:294-301CrossRefGoogle Scholar
- Dunwiddie TV, Hoffer BJ, Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability. Evidence for a role of endogenous adenosine. Naunyn-Schmiedeberg’s Arch Pharmacol 316:326-30CrossRefGoogle Scholar
- Dunwiddie TV, Worth TS, Olsson RA (1986) Adenosine analogs mediating depressant effects on synaptic transmission in rat hippocampus: structure-activity relationships for the N6 subregion. Naunyn Schmiedeberg’s Arch Pharmacol 334:77-85CrossRefGoogle Scholar
- Ebstein RP, Daly JW (1982) Release of norepinephrine and dopamine from brain vesicular preparations: effects of adenosine analogues. Cell Mol Neurobiol 2:193-204PubMedCrossRefGoogle Scholar
- Enero MA, Saidman BQ (1977) Possible feed-back inhibition of noradrenaline release by purine compounds. Naunyn-Schmiedeberg’s Arch Pharmacol 297:39-46CrossRefGoogle Scholar
- Fastbom J, Pazos A, Probst A et al (1986) Adenosine A1 -receptors in human brain: characterization and autoradiographic visualization. Neurosci Lett 65:127-32PubMedCrossRefGoogle Scholar
- Feoktistov I, Biaggioni I (1997) Adenosine A2B receptors. Pharmacol Rev 49:381-402PubMedGoogle Scholar
- Ferr é S, Karcz-Kubicha M, Hope BT et al (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proc Natl Acad Sci USA 99:11940-5CrossRefGoogle Scholar
- Feuerstein TJ, Hertting G, Jackisch R (1985) Modulation of hippocampal serotonin (5-HT) release by endogenous adenosine. Eur J Pharmacol 107:233-42PubMedCrossRefGoogle Scholar
- Filippov AK, Simon J, Barnard EA et al (2003) Coupling of the nucleotide P2Y4 receptor to neuronal ion channels. Br J Pharmacol 138:400-6PubMedCrossRefGoogle Scholar
- Filippov AK, Fernandez-Fernandez JM, Marsh SJ et al (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K+ channels by P2Y nucleotide receptors. Mol Pharmacol 66:468-77PubMedGoogle Scholar
- Forsyth KM, Bjur RA, Westfall DP (1991) Nucleotide modulation of norepinephrine release from sympathetic nerves in the rat vas deferens. J Pharmacol Exp Ther 1256:821-6Google Scholar
- Franco R, Canela EI, Bozal J (1986) Enzymes of the purine metabolism in rat brain microsomes. Neurochem Res 11:407-22PubMedCrossRefGoogle Scholar
- Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9:130-4PubMedCrossRefGoogle Scholar
- Fredholm BB, Lindgren E (1987) Effects of N-ethylmaleimide and forskolin on noradrenaline release from rat hippocampal slices. Evidence that prejunctional adenosine and alpha-receptors are linked to N-proteins but not to adenylate cyclase. Acta Physiol Scand 130:95-105PubMedCrossRefGoogle Scholar
- Fredholm BB, Lindgren E (1988) Protein kinase C activation increases noradrenaline release from rat hippocampus and modifies the inhibitory effect of α2 -adrenoceptor and adenosine A1 receptor agonists. Naunyn Schmiedeberg’s Arch Pharmacol 337:477-83CrossRefGoogle Scholar
- Fredholm BB, Jonzon B, Lindgren E (1983) Inhibition of noradrenaline release from hippocampal slices by a stable adenosine analogue. Acta Physiol Scand Suppl 515:7-10PubMedGoogle Scholar
- Fredholm BB, Fastbom J, Lindgren E (1986) Effects of N-ethylmaleimide and forskolin on glutamate release from rat hippocampal slices. Evidence that prejunctional adenosine receptors are linked to N-proteins, but not to adenylate cyclase. Acta Physiol Scand 127:381-6PubMedCrossRefGoogle Scholar
- Fredholm BB, Ijzerman AP, Jacobson KA et al (2001) Nomenclature and classification of adenosine receptors. Pharmacol Rev 53: 527-52PubMedGoogle Scholar
- Fresco P, Diniz C, Queiroz G et al (2002) Release inhibitory receptors activation favours the A2A adenosine receptor-mediated facilitation of noradrenaline release in isolated rat-tail artery. Br J Pharmacol 136:230-6PubMedCrossRefGoogle Scholar
- Fresco P, Diniz C, Gonçalves J (2004) Facilitation of noradrenaline release by activation of adenosine A2A receptors triggers both phospholipase C and adenylate cyclase pathways in rat tail artery. Cardiovasc Res 63:739-46PubMedCrossRefGoogle Scholar
- Fuder H, Muth U (1993) ATP and endogenous agonists inhibit evoked [3 H]-noradrenaline release in rat iris via A1 and P2Y-like purinoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 348:352-7Google Scholar
- Fuder H, Brink A, Meincke M et al (1992) Purinoceptor-mediated modulation by endogenous and exogenous agonists of stimulation-evoked [3 H]-noradrenaline release on rat iris. Naunyn Schmiedeberg’s Arch Pharmacol 345:417-23CrossRefGoogle Scholar
- Fujioka M, Cheung DW (1987) Autoregulation of neuromuscular transmission in the guinea-pig saphenous artery. Eur J Pharmacol 139:147-53PubMedCrossRefGoogle Scholar
- Gamper N, Reznikov V, Yamada Y et al (2004) Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980-992PubMedCrossRefGoogle Scholar
- Gerevich Z, Borvendeg SJ, Schroeder W et al (2004) Inhibition of N type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADPinduced analgesia. J Neurosci 24:797-807PubMedCrossRefGoogle Scholar
- Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal ganglion neurons. Eur J Pharmacol 521:34-38PubMedCrossRefGoogle Scholar
- Gin és S, Hillion J, Torvinen M et al (2000) Dopamine D1 and adenosine A1 receptors from functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97:8606-11CrossRefGoogle Scholar
- Gin és S, Ciruela F, Burgue ño J et al (2001) Involvement of caveolin in ligand-induced recruitment and internalization of A1 adenosine receptor and adenosine deaminase in an epithelial cell line. Mol Pharmacol 59:1314-23Google Scholar
- Giniatullin RA, Sokolova EM (1998) ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors. Br J Pharmacol 124:839-44PubMedCrossRefGoogle Scholar
- Ginsborg BL, Hirst GD (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol 224:629-45PubMedGoogle Scholar
- Glass M, Faull RL, Dragunow M (1996) Localisation of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine A1 receptors. Brain Res 710:79-91PubMedCrossRefGoogle Scholar
- Gonçalves J, Queiroz G (1993) Facilitatory and inhibitory modulation by endogenous adenosine of noradrenaline release in the epididymal portion of rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 348:367-71Google Scholar
- Gonçalves J, Queiroz G (1996) Purinoceptor modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y- and facilitatory A2A -purinoceptors. Br J Pharmacol 117:156-60PubMedGoogle Scholar
- Gonçalves J, B ültmann R, Driessen B (1996) Opposite modulation of cotransmitter release in guinea-pig vas deferens: increase of noradrenaline and decrease of ATP release by activation of prejunctional β-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 353:184-92Google Scholar
- Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728-34CrossRefGoogle Scholar
- Gross RA, Macdonald RL, Ryan-Jastrow T (1989) 2-Chloroadenosine reduces the N calcium current of cultured mouse sensory neurones in a pertussis toxin-sensitive manner. J Physiol 411:585-95PubMedGoogle Scholar
- Gubitz AK, Widdowson L, Kurokawa M et al (1996) Dual signalling by the adenosine A2a receptor involves activation of both N- and P-type calcium channels by different G proteins and protein kinases in the same striatal nerve terminals. J Neurochem 67:374-81PubMedCrossRefGoogle Scholar
- Haas HL, Greene RW (1988) Endogenous adenosine inhibits hippocampal CA1 neurones: further evidence from extra- and intracellular recording. Naunyn Schmiedeberg’s Arch Pharmacol 1988337:561-5Google Scholar
- Hada J, Kaku T, Morimoto K et al (1998) Activation of adenosine A2 receptors enhances high K+ evoked taurine release from rat hippocampus: a microdialysis study. Amino Acids15:43-52PubMedCrossRefGoogle Scholar
- Hamid J, Nelson D, Spaetgens R et al (1999) Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 274:6195-202PubMedCrossRefGoogle Scholar
- Harms HH, Wardeh G, Mulder AH (1979) Effect of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18:577-80PubMedCrossRefGoogle Scholar
- Hedqvist P, Fredholm BB (1976) Effects of adenosine on adrenergic neurotransmission; prejunctional inhibition and postjunctional enhancement. Naunyn Schmiedeberg’s Arch Pharmacol 293:217-23CrossRefGoogle Scholar
- Helfman CC, Zhong H, Barraco RA et al (1996) The effects of 5′ -N-ethylcarboxamidoadenosine on evoked release of [3 H]serotonin in the rat nucleus tractus solitarius. Neurosci Lett 213:61-5PubMedCrossRefGoogle Scholar
- Hertting G, Wurster S, Allgaier C (1990) Regulatory proteins in presynaptic function. Ann N Y Acad Sci 604:289-304PubMedCrossRefGoogle Scholar
- Hillion J, Canals M, Torvinen M et al (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. Biol Chem 277:18091-7CrossRefGoogle Scholar
- Hollins C, Stone TW (1980) Adenosine inhibition of γ-aminobutyric acid release from slices of rat cerebral cortex. Br J Pharmacol 69:107-12PubMedGoogle Scholar
- Hollopeter G, Jantzen HM, Vincent D et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202-7PubMedCrossRefGoogle Scholar
- Holton FA, Holton P (1953) The possibility that ATP is a transmitter at sensory nerve endings. J Physiol 119: 50P–51PPubMedGoogle Scholar
- Hong SJ, Chang CC (1998) Evaluation of intrinsic modulation of synaptic transmission by ATP in mouse fast twitch muscle. J Neurophysiol 80:2550-8PubMedGoogle Scholar
- Hunt JM, Redman RS, Silinsky EM (1994) Reduction by intracellular calcium chelation of acetylcholine secretion without occluding the effects of adenosine at frog motor nerve endings. Br J Pharmacol 111:753-8PubMedGoogle Scholar
- Hur EM, Kim KT (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 14:397-405PubMedCrossRefGoogle Scholar
- Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Eur J Physiol 452:538-51CrossRefGoogle Scholar
- Hutchison AJ, Webb RL, Oei HH et al (1989) CGS 21680C, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J Pharmacol Exp Ther 251:47-55PubMedGoogle Scholar
- Ingall AH, Dixon J, Bailey A et al (1999) Antagonists of the platelet P2T receptor: A novel approach to antithrombotic therapy. J Med Chem 42:213-20PubMedCrossRefGoogle Scholar
- Inoue K, Koizumi S, Ueno S et al (1999) The functions of ATP receptors in the synaptic transmission in the hippocampus. Prog Brain Res 120:193-206PubMedCrossRefGoogle Scholar
- Jackisch R, Strittmatter H, Kasakov L et al (1984) Endogenous adenosine as a modulator of hippocampal acetylcholine release. Naunyn-Schmiedeberg’s Arch Pharmacol 327:319-25CrossRefGoogle Scholar
- Jackisch R, Fehr R, Hertting G (1985) Adenosine: an endogenous modulator of hippocampal noradrenaline release. Neuropharmacology 24:499-507PubMedCrossRefGoogle Scholar
- Jarvis MF, Schulz R, Hutchison AJ et al (1989) [3 H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Therap 251:888-93Google Scholar
- Jeong SW, Ikeda SR (2000) Effect of G protein heterotrimer composition on coupling of neurotransmitter receptors to N-type Ca2+ channel modulation in sympathetic neurons. Proc Natl Acad Sci 97:907-12PubMedCrossRefGoogle Scholar
- Jin S, Fredholm BB (1997) Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. NaunynSchmiedeberg’s Arch Pharmacol 355:48-56CrossRefGoogle Scholar
- Jonzon B, Fredholm BB (1984) Adenosine receptor mediated inhibition of noradrenaline release from slices of the rat hippocampus. Life Sci 35:1971-9PubMedCrossRefGoogle Scholar
- Katada T, Gilman AG, Watanabe Y et al (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431-7PubMedCrossRefGoogle Scholar
- Katsuragi T, Su C (1982) Augmentation by theophylline of [3 H]purine release from vascular adrenergic nerves: evidence for presynaptic autoinhibition. J Pharmacol Exp Ther 220:152-6PubMedGoogle Scholar
- Kegel B, Braun N, Heine P et al (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36:1189-1200PubMedCrossRefGoogle Scholar
- Kim YC, Ji X, Melman N et al (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A2B adenosine receptors. J Med Chem 43:1165-72PubMedCrossRefGoogle Scholar
- Ribeiro JA, Walker J (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol 54:213-18PubMedGoogle Scholar
- Ribeiro JA, Sa-Almeida AM, Namorado JM (1979) Adenosine and adenosine triphosphate decrease 45 Ca uptake by synaptosomes stimulated by potassium. Biochem Pharmacol 28:1297-1300PubMedCrossRefGoogle Scholar
- Rivkees SA, Price SL, Zhou FC (1995) Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res 677:193-203PubMedCrossRefGoogle Scholar
- Robitaille R, Thomas S, Charlton MP (1999) Effects of adenosine on Ca2+ entry in the nerve terminal of the frog neuromuscular junction. Can J Physiol Pharmacol 77:707-14PubMedCrossRefGoogle Scholar
- Robson SC, S évigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signalling 2:409-30PubMedCrossRefGoogle Scholar
- Rodrigues RJ, Almeida T, Richardson PJ et al (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1 , P2X2/3 , and P2X3 and inhibitory P2Y1 , P2Y2 , and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286-95PubMedCrossRefGoogle Scholar
- Rosenberg PA, Li Y (1995) Vasoactive intestinal peptide regulates extracellular adenosine levels in rat cortical cultures. Neurosci Lett 200:93-6PubMedCrossRefGoogle Scholar
- Ruiz MA, Escriche M, Lluis C et al (2000) Adenosine A1 receptor in cultured neurons from rat cerebral cortex: colocalization with adenosine deaminase. J Neurochem 75:656-64PubMedCrossRefGoogle Scholar
- Saitoh Y, Nakata H (1996) Photoaffinity labelling of a P3 purinoceptor-like protein purified from rat brain membranes. Biochem Biophys Res Commun 219: 469-74PubMedCrossRefGoogle Scholar
- Saitow F, Suzuki H, Konishi S (2005) Beta-adrenoceptor-mediated long term up-regulation of the release machinery at rat cerebellar GABAergic synapses. J Physiol 565:487-502PubMedCrossRefGoogle Scholar
- Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6:13-23PubMedGoogle Scholar
- Saura CA, Mallol J, Canela EI et al (1998) Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization. J Biol Chem 273:17610-17PubMedCrossRefGoogle Scholar
- Schindler M, Harris CA, Hayes B et al (2001) Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett 297:211-15PubMedCrossRefGoogle Scholar
- Schlicker E, G öthert M (1998) Interactions between the presynaptic α2 -autoreceptor and presynaptic inhibitory heteroreceptors on noradrenergic neurones. Brain Res Bull 47:129-32PubMedCrossRefGoogle Scholar
- Schubert P, Heinemann U, Kolb R (1986) Differential effect of adenosine on pre- and postsynaptic calcium fluxes. Brain Res 376:382-6PubMedCrossRefGoogle Scholar
- Sebasti ão AM, Ribeiro JA (1985) Enhancement of transmission at the frog neuromuscular junction by adenosine deaminase: evidence for an inhibitory role of endogenous adenosine on neuromuscular transmission. Neurosci Lett 62:267-70CrossRefGoogle Scholar
- Sebasti ão AM, Ribeiro JA (1988) On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. Br J Pharmacol 94:109-20Google Scholar
- Sebasti ão A M, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci 21:341-6CrossRefGoogle Scholar
- Sebasti ão AM, Stone TW, Ribeiro JA (1990) The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: antagonism by 1,3,8-substituted xanthines. Br J Pharmacol 101:453-9Google Scholar
- Sebasti ão AM, Cunha RA, Cascalheira JF et al (1999) Adenine nucleotides as inhibitors of synaptic transmission: role of localised ectonucleotidases. Prog Brain Res 120:183-92CrossRefGoogle Scholar
- Sebasti ão AM, Macedo MP, Ribeiro JA (2000) Tonic activation of A2A adenosine receptors unmasks, and of A1 receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. Br J Pharmacol 129:374-80CrossRefGoogle Scholar
- Shaver SR, Rideout JL, Pendergast W et al (2005) Structure-activity relationships of dinucleotides: potent and selective agonists of P2Y receptors. Purinergic Signal 1:183-91PubMedCrossRefGoogle Scholar
- Shindou T, Mori A, Kase H et al (2001) Adenosine A2A receptor enhances GABAA -mediated IPSCs in the rat globus pallidus. J Physiol 532:423-34PubMedCrossRefGoogle Scholar
- Shinozuka K, Bjur RA, Westfall DP (1988) Characterization of prejunctional purinoceptors on adrenergic nerves of the rat caudal artery. Naunyn Schmiedeberg’s Arch Pharmacol 338:221-7CrossRefGoogle Scholar
- Shinozuka K, Tanioka Y, Kwon YM et al (2001) Characterization of prejunctional purinoceptors inhibiting noradrenaline release in rat mesenteric arteries. Jpn J Pharmacol 85:41-6PubMedCrossRefGoogle Scholar
- Shoji-Kasai Y, Itakura M, Kataoka M et al (2002) Protein kinase C-mediated translocation of secretory vesicles to plasma membrane and enhancement of neurotransmitter release from PC12 cells. Eur J Neurosci 15:1390-4PubMedCrossRefGoogle Scholar
- Silinsky EM (1980) Evidence for specific adenosine receptors at cholinergic nerve endings. Br J Pharmacol 71:191-4PubMedGoogle Scholar
- Silinsky EM (2004) Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction. J Physiol 558:389-401PubMedCrossRefGoogle Scholar
- Silinsky EM, Ginsborg BL (1983) Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not adenosine. Nature 305:327-8PubMedCrossRefGoogle Scholar
- Simon J, Filippov AK, Goransson S et al (2002) Characterization and channel coupling of the P2Y12 nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390-400PubMedCrossRefGoogle Scholar
- Sperl ágh B, Mergl Z, Juranyi Z et al (1999) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol 160:343-50CrossRefGoogle Scholar
- Su C (1983) Purinergic neurotransmission and neuromodulation. Pharmacol Rev 23: 397-411Google Scholar
- Su C, Bevan JA, Burnstock G (1971) [3 H]adenosine triphosphate: release during stimulation of enteric nerves. Science 173:336-38PubMedCrossRefGoogle Scholar
- Talaia C, Queiroz G, Quintas C et al (2005) Interaction between adenosine A2B receptors and α2 -adrenoceptors on the modulation of noradrenaline release in the rat vas deferens: possible involvement of a group 2 adenylyl cyclase isoform. Neurochem Int 47:418-29PubMedCrossRefGoogle Scholar
- Talaia C, Queiroz G, Pinheiro H et al (2006) Involvement of G-protein βγ subunits on the influence of inhibitory α2 -autoreceptors on the angiotensin AT1 -receptor-modulation of noradrenaline release in the rat vas deferens. Neurochem Int 49:698-707PubMedCrossRefGoogle Scholar
- Ther L, Muschaweck R, Hergott J (1957) Antagonism between adenosine & methylxanthine at the bundle of His of the heart. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 231:586-90CrossRefGoogle Scholar
- Todorov LD, Bjur RA, Westfall DP (1994) Inhibitory and facilitatory effects of purines on transmitter release from sympathetic nerves. J Pharmacol Exp Ther 268:985-9PubMedGoogle Scholar
- Todorov LD, Mihaylova-Todorova S, Craviso GL et al (1996) Evidence for the differential release of the cotransmitters ATP and noradrenaline from sympathetic nerves of the guinea-pig vas deferens. J Physiol 496:731-48PubMedGoogle Scholar
- Trendelenburg AU, B ültmann R (2000) P2 receptor-mediated inhibition of dopamine release in rat neostriatum. Neuroscience 96:249-52PubMedCrossRefGoogle Scholar
- Trendelenburg AU, Meyer A, Klebroff W et al (2003) Cross talk between presynaptic angiotensin receptors, bradykinin receptors and α2 -autoreceptors in sympathetic neurons: a study in α2 adrenoceptor-deficient mice. Br J Pharmacol 138:1389-1402PubMedCrossRefGoogle Scholar
- Umemiya M, Berger AJ (1994) Activation of adenosine A1 and A2 receptors differentially modulates calcium channels and glycinergic synaptic transmission in rat brainstem. Neuron 13:1439-46PubMedCrossRefGoogle Scholar
- van Calker D, Muller M, Hamprecht B (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276:839-41PubMedCrossRefGoogle Scholar
- van Galen PJ, van Bergen AH, Gallo-Rodriguez C et al (1994) A binding site model and structureactivity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45:1101-11PubMedGoogle Scholar
- van Muijlwijk-Koezen JE, Timmerman H, van der Goot H et al (2000) Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A(3) receptor. J Med Chem 43:2227-38PubMedCrossRefGoogle Scholar
- van Schaick EA, Jacobson KA, Kim HO et al (1996) Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. Eur J Pharmacol 308:311-14PubMedCrossRefGoogle Scholar
- Varani K, Merighi S, Gessi S et al (2000) [3 H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Mol Pharmacol 57:968-75PubMedGoogle Scholar
- Vartian N, Boehm S (2001) P2Y receptor-mediated inhibition of voltage-activated Ca2+ currents in PC12 cells. Eur J Neurosci 13:899-908PubMedCrossRefGoogle Scholar
- Vaughan PF, Walker JH, Peers C (1998) The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol 18:125-55PubMedCrossRefGoogle Scholar
- Verhaeghe RH, Vanhoutte PM, Shepherd JT (1977) Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenine nucleotides. Circ Res. 1977 40:208-15PubMedGoogle Scholar
- Volknandt W (2002) Vesicular release mechanisms in astrocytic signalling. Neurochem Int 41: 301-6PubMedCrossRefGoogle Scholar
- von K ügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415-32CrossRefGoogle Scholar
- von K ügelgen I, Starke K (1987) Evidence for two separate vasoconstrictor-mediating nucleotide receptors, both distinct from P2X -receptor, in rat basilar artery: a receptor for pyrimidine nucleotides and a receptor for purine nucleotides. Naunyn-Schmiedeberg’s Arch Pharmacol 341:538-46Google Scholar
- von K ügelgen I, H äussinger D, Starke K (1987) Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn Schmiedeberg’s Arch Pharmacol 336:556-60Google Scholar
- von K ügelgen I, Sch öffel E, Starke K (1989) Inhibition by nucleotides acting at presynaptic P2-receptors of sympathetic neuro-efector transmission in the mouse isolated vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 340:522-32Google Scholar
- von K ügelgen I, Kurz K, Starke K (1993) Axon terminal P2-purinoceptors in feedback control of sympathetic transmitter release. Neuroscience 56:263-67CrossRefGoogle Scholar
- von K ügelgen I, Kurz K, Starke K (1994) Evidence for P2 -purinoceptor-mediated inhibition of noradrenaline release in rat brain cortex. Br J Pharmacol 113:815-22Google Scholar
- von K ügelgen I, St öffel D, Starke K (1995) P2-purinoceptor-mediated inhibition of noradrenaline release in rat atria. Br J Pharmacol 115:247-54Google Scholar
- von K ügelgen I, Koch H, Starke K (1997) P2-receptor-mediated inhibition of serotonin release in the rat brain cortex. Neuropharmacology 36:1221-7CrossRefGoogle Scholar
- Weber RG, Jones CR, Palacios JM et al (1988) Autoradiographic visualization of A1 -adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125 I-HPIA. Neurosci Lett 87:215-20PubMedCrossRefGoogle Scholar
- Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharm Exp Ther 303:439-44CrossRefGoogle Scholar
- Wiklund NP, Gustafsson LE (1986) Neuromodulation by adenine nucleotides, as indicated by experiments with inhibitors of nucleotide inactivation. Acta Physiologica Scandinava 126:217-23CrossRefGoogle Scholar
- Wiklund NP, Gustafsson LE, Lundin J (1985) Pre- and postjunctional modulation of cholinergic neuroeffector transmission by adenine nucleotides. Experiments with agonist and antagonist. Acta Physiol Scand 125:681-91PubMedCrossRefGoogle Scholar
- Wiklund NP, Cederqvist B, Gustafsson LE (1989) Adenosine enhancement of adrenergic neuroeffector transmission in guinea-pig pulmonary artery. Br J Pharmacol 96:425-33PubMedGoogle Scholar
- Yasuda H, Lindorfer MA, Woodfork KA et al (1996) Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. J Biol Chem 271: 18588-95PubMedCrossRefGoogle Scholar
- Yawo H, Chuhma N (1993) Preferential inhibition of omega-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 365:256-8PubMedCrossRefGoogle Scholar
- Yoshioka K, Saitoh O, Nakata H (2002) Agonist-promoted heteromeric oligomerization between adenosine A1 and P2Y1 receptors in living cells. FEBS Lett 523:147-51PubMedCrossRefGoogle Scholar
- Zetterstrom T, Fillenz M (1990) Adenosine agonists can both inhibit and enhance in vivo striatal dopamine release. Eur J Pharmacol 180:137-43PubMedCrossRefGoogle Scholar
- Zhang FL, Luo L, Gustafson E et al (2002) P2Y13 : identification and characterization of a novel Gαi -coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705-13PubMedCrossRefGoogle Scholar
- Zhang JM, Wang HK, Ye CH et al (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971-82PubMedCrossRefGoogle Scholar
- Zimmermann H (1992) 5′ -Nucleotidase: molecular structure and functional aspects. Biochem J 285:345-65PubMedGoogle Scholar
- Kirk IP, Richardson PJ (1994) Adenosine A2a receptor-mediated modulation of striatal [3 H]GABA and [3 H]acetylcholine release. J Neurochem 62:960-6PubMedCrossRefGoogle Scholar
- Koch H, von K ügelgen I, Starke K (1997) P2-receptor-mediated inhibition of noradrenaline release in the rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 355:707-15CrossRefGoogle Scholar
- Koch H, von K ügelgen I, Starke K (1998) P2-receptor-mediated inhibition of noradrenaline release in the rat pancreas. Naunyn-Schmiedeberg’s Arch Pharmacol 357:431-40CrossRefGoogle Scholar
- Koizumi S, Inoue K (1997) Inhibition by ATP of calcium oscillations in rat cultured hippocampal neurones. Br J Pharmacol 122:51-8PubMedCrossRefGoogle Scholar
- Koizumi S, Fujishita K, Tsuda M et al (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci USA 100:11023-8PubMedCrossRefGoogle Scholar
- Kubista H, Boehm S (2006) Molecular mechanisms underlying the modulation of exocytotic no-radrenaline release via presynaptic receptors. Pharmacol Ther 112:213-42PubMedCrossRefGoogle Scholar
- Kukulski F, Sevigny J, Komoszynski M (2004) Comparative hydrolysis of extracellular adenine nucleotides and adenosine in synaptic membranes from porcine brain cortex, hippocampus, cerebellum and medulla oblongata. Brain Res 1030:49-56PubMedCrossRefGoogle Scholar
- Kurokawa M, Koga K, Kase H et al (1996) Adenosine A2a receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem 66:1882-8PubMedCrossRefGoogle Scholar
- Kurz K, von K ügelgen I, Starke K (1993) Prejunctional modulation of noradrenaline release in mouse and rat vas deferens: contribution of P1- and P2-purinoceptors. Br J Pharmacol 110:1465-72PubMedGoogle Scholar
- Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463-84PubMedCrossRefGoogle Scholar
- Lechner SG, Dorostkar MM, Mayer M et al (2004) Autoinhibition of transmitter release from PC12 cells and sympathetic neurons through a P2Y12 receptor-mediated inhibition of voltage-gated Ca2+ channels. Eur J Neurosci 20:2917-28PubMedCrossRefGoogle Scholar
- Lechner SG, Hussl S, Schicker KW et al (2005) Presynaptic inhibition via a phospholipase Cand phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 68:1387-96PubMedCrossRefGoogle Scholar
- Liang M, Eason MG, Jewell-Motz EA et al (1998) Phosphorylation and functional desensitisation of the α2A -adrenergic receptor by protein kinase C. Mol Pharmacol 54:44-9PubMedGoogle Scholar
- Lim W, Kim SJ, Yan HD et al (1997) Ca2+ -channel dependent and -independent inhibition of exocytosis by extracellular ATP in voltage-clamped rat adrenal chromaffin cells. Pflugers Arch 435:34-42PubMedCrossRefGoogle Scholar
- Lim WK, Myung C-S, Garrison JC et al (2001) Receptor-G protein γ specificity: γ11 shows unique potency for A1 adenosine and 5-HT1A receptors. Biochemistry 40:10532-41PubMedCrossRefGoogle Scholar
- Limberger N, Sp äth L, Starke K (1988) Presynaptic α2 -adrenoceptor, opioid k-receptor and adenosine A1-receptor interactions on noradrenaline release in rabbit brain cortex. NaunynSchmiedberg’s Arch Pharmacol 338:53-61Google Scholar
- Lohse MJ, Klotz KN, Lindenborn-Fotinos J et al (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)-a selective high affinity antagonist radioligand for A1 adenosine receptors. NaunynSchmiedeberg’s Arch Pharmacol 336:204-10CrossRefGoogle Scholar
- Londos C, Preston MS (1977) Regulation of glucagon and divalent cations of inhibition of hepatic adenylate cyclase by adenosine. J Biol Chem 252:5951-6PubMedGoogle Scholar
- Lopes LV, Cunha RA, Ribeiro JA (1999) Cross talk between A1 and A2A adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196-3203PubMedGoogle Scholar
- Lopes LV, Cunha RA, Kull B et al (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319-29PubMedCrossRefGoogle Scholar
- Lupica CR, Cass WA, Zahniser NR et al (1990) Effects of the selective adenosine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. J Pharmacol Exp Therap 252:1134-41Google Scholar
- Luthardt J, Borvendeg SJ, Sperl ágh B et al (2003) P2Y1 receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int 42:161-72PubMedCrossRefGoogle Scholar
- Lynge J, Hellsten Y (2000) Distribution of adenosine A1 , A2A and A2B receptors in human skeletal muscle. Acta Physiol Scand 169:283-90PubMedCrossRefGoogle Scholar
- MacLean DA, Sinoway LI, Leuenberger U (1998) Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans. Circulation 98:1990-2PubMedGoogle Scholar
- Marchi M, Raiteri L, Risso F et al (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br J Pharmacol 136:434-40PubMedCrossRefGoogle Scholar
- Matsuoka I, Ohkubo S (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 94: 95-9PubMedCrossRefGoogle Scholar
- Mayfield RD, Suzuki F, Zahniser NR (1993) Adenosine A2a receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem 60:2334-7PubMedCrossRefGoogle Scholar
- Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) ATP inhibits glutamate synaptic re-lease by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172-9PubMedGoogle Scholar
- Michaelis ML, Michaelis EK, Myers SL (1979) Adenosine modulation of synaptosomal dopamine release. Life Sci 24:2083-92PubMedCrossRefGoogle Scholar
- Mihaylova-Todorova ST, Todorov LD, Westfall DP (2002) Enzyme kinetics and pharmacological characterization of nucleotidases released from the guinea pig isolated vas deferens during nerve stimulation: evidence for a soluble ecto-nucleoside triphosphate diphosphohydrolase-like ATPase and a soluble ecto-5′ nucleotidase-like AMPase. J Pharmacol Exp Ther 302:992-1001PubMedCrossRefGoogle Scholar
- Moos WH, Szotek DS, Bruns RF (1985) N6 -Cycloalkyladenosines. Potent A1 -selective adenosine agonists. J Med Chem 28:1383-4PubMedCrossRefGoogle Scholar
- Mota A, Guimar ães S (2003) Influence of α2 -autoreceptor-stimulation on the facilitation by angiotensin II and bradykinin of noradrenaline release. Naunyn-Schmiedberg’s Arch Pharmacol 368:443-7CrossRefGoogle Scholar
- Muller MJ, Paton DM (1979) Presynaptic inhibitory actions of 2-substituted adenosine derivatives on neurotransmission in rat vas deferens: effects of inhibitors of adenosine uptake and deamination. Naunyn-Schmiedeberg’s Arch Pharmacol 306:23-8CrossRefGoogle Scholar
- Munshi R, Pang IH, Sternweis PC et al (1991) A1 adenosine receptors of bovine brain couple to guanine nucleotide-binding proteins Gi1, Gi2, and Go. J Biol Chem 266:22285-9PubMedGoogle Scholar
- Mynlieff M, Beam KG (1994) Adenosine acting at an A1 receptor decreases N-type calcium current in mouse motoneurons. J Neurosci 14:3628-34PubMedGoogle Scholar
- Nagy G, Reim K, Matti U et al (2004) Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 41:417-29PubMedCrossRefGoogle Scholar
- Nakata H, Yoshioka K, Kamiya T et al (2005) Functions of heteromeric association between adenosine and P2Y receptors. J Mol Neurosci 25:233-8CrossRefGoogle Scholar
- Nakatsuka H, Nagano O, Foldes FF et al (1995) Effects of adenosine on norepinephrine and acetylcholine release from guinea pig right atrium: role of A1 -receptors. Neurochem Int 27:345-53PubMedCrossRefGoogle Scholar
- Nitahara K, Kittel A, Liang SD, Vizi ES (1995) A1 -receptor-mediated effect of adenosine on the release of acetylcholine from the myenteric plexus: role and localization of ecto-ATPase and 5′ -nucleotidase. Neuroscience 67:159-68PubMedCrossRefGoogle Scholar
- O’Kane EM, Stone TW (1998) Interaction between adenosine A1 and A2 receptor-mediated responses in the rat hippocampus in vitro. Eur J Pharmacol 362:17-25PubMedCrossRefGoogle Scholar
- Ohkubo S, Kimura J, Matsuoka I (2000) Ecto-alkaline phosphatase in NG108-15 cells: a key enzyme mediating P1 antagonist sensitive ATP response. Br J Pharmacol 131:1667-2PubMedCrossRefGoogle Scholar
- Okada M, Mizuno K, Kaneko S (1996) Adenosine A1 and A2 receptors modulate extracellular dopamine levels in rat striatum. Neurosci Lett 212:53-6PubMedCrossRefGoogle Scholar
- Okada M, Nutt DJ, Murakami T et al (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci 21:628-40PubMedGoogle Scholar
- Oliveira L, Correia-de-Sá P (2005) Protein kinase A and Cav 1 (L-Type) channels are common targets to facilitatory adenosine A2A and muscarinic M1 receptors on rat motoneurons. Neurosignals 14:262-72PubMedCrossRefGoogle Scholar
- Olsson RA, Davies CJ, Khouri EM et al (1976) Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circ Res 39:93-8PubMedGoogle Scholar
- Ongini E, Dionisotti S, Gessi S, Irnius E, Fredholm BB (1999) Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 359:7-10CrossRefGoogle Scholar
- O’Regan MH, Simpson RE, Perkins LM et al (1992) The selective A2 adenosine receptor agonist CGS 21680 enhances excitatory transmitter amino acid release from the ischemic rat cerebral cortex. Neurosci Lett 138:169-72PubMedCrossRefGoogle Scholar
- Paton DM (1981) Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J Auton Pharmacol 1:287-90PubMedCrossRefGoogle Scholar
- Pedata F, Antonelli T, Lambertini L et al (1983) Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophylline on acetylcholine release from electrically-stimulated brain slices. Neuropharmacol 22:609-14CrossRefGoogle Scholar
- Phillis JW, Kostopoulos GK, Limacher JJ (1975) A potent depressant action of adenine derivatives on cerebral cortical neurones. Eur J Pharmacol 30:125-9PubMedCrossRefGoogle Scholar
- Popoli P, Betto P, Reggio R et al (1995) Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 287:215-17PubMedCrossRefGoogle Scholar
- Poucher SM, Keddie JR, Singh P et al (1995) The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2a selective adenosine receptor antagonist. Br J Pharmacol 115: 1096-1102PubMedGoogle Scholar
- Powell AD, Teschemacher AG, Seward EP (2000) P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J Neurosci 20:606-16PubMedGoogle Scholar
- Price GD, Robertson SJ, Edwards FA (2003) Long-term potentiation of glutamatergic synaptic transmission induced by activation of presynaptic P2Y receptors in the rat medial habenula nucleus. Eur J Neurosci 17:844-50PubMedCrossRefGoogle Scholar
- Quarta D, Ferr é S, Solinas M et al (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151-8PubMedCrossRefGoogle Scholar
- Queiroz G, Gebicke-Haerter PJ, Schobert A et al (1997) Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 78:1203-8PubMedCrossRefGoogle Scholar
- Queiroz G, Diniz C, Gonçalves J (2002) Facilitation of noradrenaline release by adenosine A2A receptors in the epididymal portion and adenosine A2B receptors in the prostatic portion of the rat vas deferens. Eur J Pharmacol 448:45-50PubMedCrossRefGoogle Scholar
- Queiroz G, Quintas C, Talaia C et al (2004) Coupling to protein kinases A and C of adenosine A2B receptors involved in the facilitation of noradrenaline release in the prostatic portion of rat vas deferens. Neuropharmacology 47:216-24PubMedCrossRefGoogle Scholar
- Queiroz G, Talaia C, Gonçalves J (2003a) Adenosine A2A receptor-mediated facilitation of noradrenaline release involves protein kinase C activation and attenuation of presynaptic inhibitory receptor-mediated effects in the rat vas deferens. J Neurochem 85:740-8CrossRefGoogle Scholar
- Queiroz G, Talaia C, Gonçalves J (2003b) ATP modulates noradrenaline release by activation of inhibitory P2Y receptors and facilitatory P2X receptors in the rat vas deferens. J Pharmacol Exp Ter 307:809-15CrossRefGoogle Scholar
- Rebola R, Oliveira CR, Cunha RA (2002) Transducing system operated by adenosine A2A receptors to facilitate acetylcholine release in the rat hippocampus. Eur J Pharmacol 454:31-8PubMedCrossRefGoogle Scholar
- Reddington M, Lee KS, Schubert P (1982) An A1 -adenosine receptor, characterized by [3 H] cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation. Neurosci Lett 28:275-9PubMedCrossRefGoogle Scholar
- Ribeiro JA, Sebasti ão AM (1985) On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br J Pharmacol 84:911-18PubMedGoogle Scholar
- Ribeiro JA, Sebasti ão AM (1986) Adenosine receptors and calcium: basis for proposing a third (A3 ) adenosine receptor. Prog Neurobiol 26:179-209PubMedCrossRefGoogle Scholar
- Ribeiro JA, Sebasti ão AM (1987) On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol (Lond) 384: 571-85Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2008