Neurotransmitter Release

  • Thomas C. Süudhof

Neurons send out a multitude of chemical signals, called neurotransmitters, to communicate between neurons in brain, and between neurons and target cells in the periphery. The most important of these communication processes is synaptic transmission, which accounts for the ability of the brain to rapidly process information, and which is characterized by the fast and localized transfer of a signal from a presynaptic neuron to a postsynaptic cell. Other communication processes, such as the modulation of the neuronal state in entire brain regions by neuromodulators, provide an essential component of this information processing capacity. A large number of diverse neurotransmitters are used by neurons, ranging from classical fast transmitters such as glycine and glutamate over neuropeptides to lipophilic compounds and gases such as endocannabinoids and nitric oxide. Most of these transmitters are released by exocytosis, the i.e. the fusion of secretory vesicles with the plasma membrane, which exhibits distinct properties for different types of neurotransmitters. The present chapter will provide an overview of the process of neurotransmitter release and its historical context, and give a reference point for the other chapters in this book.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69:711-26CrossRefPubMedGoogle Scholar
  2. Brock JA, Cunnane TC (1987) Relationship between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature 326:605-7CrossRefPubMedGoogle Scholar
  3. Brenner S. (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94PubMedGoogle Scholar
  4. Castillo PE, Schoch S, Schmitz F, S üdhof TC, Malenka RC (2002) RIM1α is required for presynaptic long-term potentiation. Nature 415:327-30CrossRefPubMedGoogle Scholar
  5. Diana MA, Marty A (2004) Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 42: 9-19CrossRefGoogle Scholar
  6. Du Bois-Reymond E (1877) Gesammelte Abhandlungen zur Allgemeinen Muskel- und Nervenphysik. 2 vols, Leipzig: von Veit Verlag.Google Scholar
  7. Dulubova I, Khvotchev M, Liu S, Huryeva I, S üdhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA 104:2697-2702CrossRefPubMedGoogle Scholar
  8. Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, S üdhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41-9CrossRefPubMedGoogle Scholar
  9. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681-98CrossRefPubMedGoogle Scholar
  10. Foster M (1897) A textbook of physiology, 7th ed., Part III. London: MacmillanGoogle Scholar
  11. Gasnier B (2000) The loading of neurotransmitters into synaptic vesicle. Biochimie 82:327-37CrossRefPubMedGoogle Scholar
  12. Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNAREdependent exocytosis. Science 313:676-80CrossRefPubMedGoogle Scholar
  13. Hata Y, Slaughter CA, S üdhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347-351CrossRefPubMedGoogle Scholar
  14. Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523-35CrossRefPubMedGoogle Scholar
  15. Harata NC, Aravanis AM, Tsien R (2006) Kiss-and-run and full-collapse fusion as modes of exoendocytosis in neurosecretion. J Neurochem 97:1546-70CrossRefPubMedGoogle Scholar
  16. Hosaka M, S üdhof TC (1998) Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J Biol Chem 273:1425-9CrossRefPubMedGoogle Scholar
  17. Jahn R, Lang T, S üdhof TC (2003) Membrane fusion. Cell 112:519-33Google Scholar
  18. Katz B (1969) The release of neural transmitter substances. Liverpool: Liverpool University Press Krause W (1863) Über die Endigung der Muskelnerven. Z Rat Med 18:136-60Google Scholar
  19. Kühne W (1862) Über die peripherischen Endorgane der motorischen Nerven. Leipzig: EngelmannGoogle Scholar
  20. Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256: 677-9CrossRefPubMedGoogle Scholar
  21. Loewi O (1921) Uber humorale Ubertragbarkeit der Herznervenwirkung. Pfl ügers Arch. 189: 239-42CrossRefGoogle Scholar
  22. Malenka RC, Siegelbaum SA (2001) Synaptic plasticity. In Synapses (Cowan MW, S üdhof TC, Stevens CF, eds), The Johns Hopkins University Press, Baltimore, pp 393-453Google Scholar
  23. Meinrenken CJ, Borst JG, Sakmann B (2003) Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 547:665-89PubMedGoogle Scholar
  24. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799-802CrossRefPubMedGoogle Scholar
  25. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793-7CrossRefPubMedGoogle Scholar
  26. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205-15CrossRefPubMedGoogle Scholar
  27. Perin MS , Fried VA, Mignery GA, Jahn R, S üdhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260-3CrossRefPubMedGoogle Scholar
  28. Quik M, McIntosh JM (2006) Striatal alpha6 nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther 316:481-9CrossRefPubMedGoogle Scholar
  29. Reim K, Mansour M, Varoqueaux F, McMahon HT, S üdhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+ -dependent neurotransmitter release. Cell 104:71-81CrossRefPubMedGoogle Scholar
  30. Rizo J, S üdhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3: 641-53PubMedGoogle Scholar
  31. Rozov A, Burnashev N, Sakmann B, Neher E (2001) Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J Physiol 531:807-26CrossRefPubMedGoogle Scholar
  32. Salio C, Lossi L, Ferrini F, Merighi A. (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326:583-98CrossRefPubMedGoogle Scholar
  33. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183-95CrossRefPubMedGoogle Scholar
  34. Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28:541-51CrossRefPubMedGoogle Scholar
  35. Stjarne L (2000) Do sympathetic nerves release noradrenaline in “quanta”? J Auton Nerv Syst 81:236-43CrossRefPubMedGoogle Scholar
  36. S üdhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-47CrossRefGoogle Scholar
  37. Tang J, Maximov A, Shin O-H, Dai H, Rizo J, S üdhof TC (2006) A complexin/synaptotagmin-1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175-87CrossRefPubMedGoogle Scholar
  38. Takamori S (2006) VGLUTs: ‘exciting’ times for glutamatergic research? Neurosci Res 55:343-51CrossRefPubMedGoogle Scholar
  39. Tobaben S, Thakur P, Fernandez-Chacon R, S üdhof TC, Rettig J, Stahl B (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31:987-99CrossRefPubMedGoogle Scholar
  40. Trudeau LE (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci 29:296-310PubMedGoogle Scholar
  41. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864-9CrossRefPubMedGoogle Scholar
  42. Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92-8CrossRefPubMedGoogle Scholar
  43. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759-72CrossRefPubMedGoogle Scholar
  44. Whittaker VP, Sheridan MN (1965) The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J Neurochem 12:363-72CrossRefPubMedGoogle Scholar
  45. Xu J, Mashimo T, S üdhof TC (2007) Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567-81CrossRefPubMedGoogle Scholar
  46. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355-405CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas C. Süudhof
    • 1
  1. 1.Departments of Neuroscience and Molecular Genetics, and Howard Hughes Medical InstituteThe University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations