The Adaptive Hybrid Cursor: A Pressure-Based Target Selection Technique for Pen-Based User Interfaces

  • Xiangshi Ren
  • Jibin Yin
  • Shengdong Zhao
  • Yang Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4662)


We present the Adaptive Hybrid Cursor, a novel target acquisition technique for pen-based interfaces. To assist a user in a target selection task, this technique automatically adapts the size of the cursor and/or its contexts (the target size and the selection background) based on pen pressure input. We systematically evaluated the new technique with various 2D target acquisition tasks. The experimental results indicated that the Adaptive Hybrid Cursor had better selection performance, and was particularly effective for small-target and high-density environments in which the regular cursor and the Bubble Cursor [13] failed to show significant advantages. The Adaptive Hybrid Cursor is a novel way to improve target acquisition via pressure input, and our study demonstrated its viability and potential for pen-based interfaces.


pen-based interfaces pressure small target acquisition target density 


  1. 1.
    Accot, J., Zhai, S.: More than dotting the i’s - foundations for crossing-based interfaces. In: Proc. CHI 2002, pp. 73–80. ACM Press, New York (2002)Google Scholar
  2. 2.
    Aliakseyeu, D., Nacenta, M., Subramanian, S., Gutwin, C.: Bubble radar: efficient pen-based interaction. In: Proc. AVI 2006, pp. 19–26. ACM Press, New York (2006)Google Scholar
  3. 3.
    Barrett, R., Olyha, J., Robert, S., Rutledge, J.: Graphical User Interface Cursor Positioning Device Having a Negative Inertia Transfer Function. Patent # 5,570,111, IBM Corp (1996)Google Scholar
  4. 4.
    Baudisch, P., Cutrell, P., Hinckley, K., Eversole, A.: Snap-and-go: helping users align objects without the modality of traditional snapping. In: Proc. CHI2005, pp. 301–310. ACM Press, New York (2005)Google Scholar
  5. 5.
    Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B., Zierlinger, A.: Drag-and-pop and drag-and-pick: Techniques for accessing remote screen content on touch and pen operated systems. In: Proc. INTERACT 2003, pp. 57–64 (2003)Google Scholar
  6. 6.
    Bezerianos, A., Balakrishnan, R.: The vacuum: facilitating the manipulation of distant objects. In: Proc. CHI 2005, pp. 361–370. ACM Press, New York (2005)Google Scholar
  7. 7.
    Blanch, R., Guiard, Y., Beaudouin-Lafon, M.: Semantic pointing: improving target acquisition with control-display ratio adaptation. In: Proc. CHI 2004, pp. 519–526. ACM Press, New York (2004)Google Scholar
  8. 8.
    Buxton, A.S.W.: Three-State Model of Graphical Input, in Human-Computer Interaction. In: Proc. INTERACT 1990, pp. 449–456 (1990)Google Scholar
  9. 9.
    Cockburn, A., Brock, P.: Human on-line response to visual and motor target expansion. In: Proc. Graphics Interface 2006, pp. 81–87 (2006)Google Scholar
  10. 10.
    Collomb, M., Hascoët, M., Baudisch, P., Lee, B.: Improving drag-and-drop on wall-size displays. In: Proc. Graphics Interface 2005, pp. 8125–8132 (2005)Google Scholar
  11. 11.
    Fitts, P.M.: The information capacity of human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar
  12. 12.
    Foley, J.D., Wallace, V., Chan, P.: The Human Factors of Computer Graphics Interaction Techniques. IEEE Computer Graphics and Applications, 13–48 (1984)Google Scholar
  13. 13.
    Grossman, T., Balakrishnan, R.: The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor’s activation area. In: Proc. CHI 2005, pp. 281–290. ACM Press, New York (2005)Google Scholar
  14. 14.
    Guiard, Y., Blanch, R., Beaudouin-Lafon, M.: Object pointing: a complement to bitmap pointing in GUIs. In: Proc. Graphics Interface 2004, pp. 9–16 (2004)Google Scholar
  15. 15.
    Herot, C.F., Weinzapfel, G.: One-point touch input of vector information for computer displays. In: Conference on Computer Graphics and Interactive Techniques, pp. 210–216. ACM Press, New York (1978)Google Scholar
  16. 16.
    ISO ISO9241-9: Ergonomic design for office work with visual display terminals (VDTs)–Part 9: Requirements for non-keyboard input devices. International Standardization Organization (2000)Google Scholar
  17. 17.
    Kabbash, P., Buxton, W.A.S.: The "prince" technique: Fitts’ law and selection using area cursors. In: Proc. CHI 2005, pp. 273–279. ACM Press, New York (1995)Google Scholar
  18. 18.
    Li, Y., Hinckley, K., Guan, Z., Landay, J.: Experimental analysis of mode switching techniques in pen-based user interfaces. In: Proc. CHI 2005, pp. 461–470. ACM Press, New York (2005)Google Scholar
  19. 19.
    MacKenzie, I.S., Buxton, W.A.S.: Extending Fitts’ law to two-dimensional tasks. In: Proc. CHI 1992, pp. 219–226. ACM Press, New York (1992)Google Scholar
  20. 20.
    McGuffin, M., Balakrishnan, R.: Acquisition of expanding targets. In: Proc. CHI 2002, pp. 57–64. ACM Press, New York (2002)Google Scholar
  21. 21.
    Nacenta, M.A., Aliakseyeu, D., Subramanian, S., Gutwin, C.A.: A comparison of techniques for multi-display reaching. In: Proc. CHI 2005, pp. 371–380. ACM Press, New York (2005)Google Scholar
  22. 22.
    Parker, K., Mandryk, R., Nunes, M., Inkpen, K.: TractorBeam Selection Aids: Improving Target Acquisition for Pointing Input on Tabletop Displays. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 80–93. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: Proc. CHI 2004, pp. 487–494. ACM Press, New York (2004)Google Scholar
  24. 24.
    Ramos, G., Balakrishnan, R.: Fluid interaction techniques for the control and annotation of digital video. In: Prof. UIST 2003, pp. 105–114. ACM Press, New York (2003)Google Scholar
  25. 25.
    Ramos, G., Balakrishnan, R.: Zliding: fluid zooming and sliding for high precision parameter manipulation. In: Prof. UIST 2005, pp. 143–152. ACM Press, New York (2005)Google Scholar
  26. 26.
    Ren, X., Moriya, S.: Improving selection performance on pen-based systems: A study of pen-input interaction for selection tasks. ACM ToCHI 7(3), 384–416 (2000)CrossRefGoogle Scholar
  27. 27.
    Worden, A., Walker, N., Bharat, K., Hudson, S.: Making computers easier for older adults to use: area cursors and sticky icons. In: Proc. CHI 1997, pp. 266–271. ACM Press, New York (1997)Google Scholar
  28. 28.
    Yin, J., Ren, X.: The Beam Cursor: A Pen-based Technique for Enhancing Target Acquisition. In: Proc. HCI 2006, pp. 119–134. Springer, Heidelberg (2006)Google Scholar
  29. 29.
    Zhai, S., Conversy, S., Beaudouin-Lafon, M., Guiard, Y.: Human on-line response to target expansion. In: Proc. CHI 2003, pp. 177–184. ACM Press, New York (2003)Google Scholar
  30. 30.
    Zhai, S., Buxton, A.S.W., Milgram, P.: The "Silk Cursor": investigating transparency for 3D target acquisition. In: Proc. CHI 1994, pp. 459–464. ACM Press, New York (1994)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Xiangshi Ren
    • 1
  • Jibin Yin
    • 1
  • Shengdong Zhao
    • 2
  • Yang Li
    • 3
  1. 1.Kochi University of Technology, Kochi 782-8502Japan
  2. 2.University of Toronto, Toronto, OntarioCanada
  3. 3.University of Washington, Seattle, WA 98195-2350USA

Personalised recommendations