Data Quality Ontology: An Ontology for Imperfect Knowledge

  • Andrew U. Frank
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4736)


Data quality and ontology are two of the dominating research topics in GIS, influencing many others. Research so far investigated them in isolation. Ontology is concerned with perfect knowledge of the world and ignores so far imperfections in our knowledge. An ontology for imperfect knowledge leads to a consistent classification of imperfections of data (i.e., data quality), and a formalizable description of the influence of data quality on decisions. If we want to deal with data quality with ontological methods, then reality and the information model stored in the GIS must be represented in the same model. This allows to use closed loops semantics to define “fitness for use” as leading to correct, executable decisions. The approach covers knowledge of physical reality as well as personal (subjective) and social constructions. It lists systematically influences leading to imperfections in data in logical succession.


Data Quality Object Boundary Ontological Commitment Geographic Information System Perfect Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, B.: Space, Time, Matter and Things. In: Proceedings of the 2nd international conference on Formal Ontology in Information Systems (FOIS 2001), Ogunquit, Maine, USA, ACM, New York (2001)Google Scholar
  2. 2.
    Bittner, S.: An Agent-Based Model of Reality in a Cadastre. Technical University Vienna, Vienna (2001)Google Scholar
  3. 3.
    Boin, A.T., Hunter, G.J.: Facts or Fiction: Consumer Beliefs about Spatial Data Quality. In: Proceedings of the Spatial Sciences Conference (SSC 2007), Hobart, Tasmania (2007)Google Scholar
  4. 4.
    Brooks, R.: New Approaches to Robotics. Science 253, 1227–1232 (1991)CrossRefGoogle Scholar
  5. 5.
    Burrough, P.A.: Natural Objects with Indeterminate Boundaries. In: Burrough, P.A., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 3–28. Taylor and Francis, London (1996)Google Scholar
  6. 6.
    Ceusters, W.: Towards a Realism-Based Metric for Quality Assurance in Ontology Matching. In: International Conference on Formal Ontology in Information Systems, IOS Press, Baltimore MD (2006)Google Scholar
  7. 7.
    Fonseca, F.T., Egenhofer, M.J.: Ontology-Driven Geographic Information Systems. In: 7th ACM Symposium on Advances in Geographic Information Systems, Kansas City, MO (1999)Google Scholar
  8. 8.
    Fonseca, F.T., Egenhofer, M.J., Agouris, P., Câmara, G.: Using Ontologies for Integrated Geographic Information Systems. Transactions in GIS 6(3), 231–257 (2002)CrossRefGoogle Scholar
  9. 9.
    Frank, A.U.: Communication with Maps: A Formalized Model. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition II. LNCS (LNAI), vol. 1849, pp. 80–99. Springer, Berlin (2000)CrossRefGoogle Scholar
  10. 10.
    Frank, A.U.: Tiers of Ontology and Consistency Constraints in Geographic Information Systems. International Journal of Geographical Information Science 75(5), 667–678 (2001)CrossRefGoogle Scholar
  11. 11.
    Frank, A.U.: Ontology for Spatio-Temporal Databases. In: Sellis, T., Koubarakis, M., Frank, A., Grumbach, S., Güting, R.H., Jensen, C., Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Theodoulidis, B., Tryfona, N., Schek, H.-J., Scholl, M.O. (eds.) Spatio-Temporal Databases. LNCS, vol. 2520, pp. 9–78. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Frank, A.U.: Procedure to Select the Best Dataset for a Task. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 81–93. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Frank, A.U.: Distinctions Produce a Taxonomic Lattice: Are These the Units of Mentalese? In: International Conference on Formal Ontology in Information Systems, pp. 166–181. IOS Press, Baltimore, MD (2006)Google Scholar
  14. 14.
    Frank, A.U.: Incompleteness, Error, Approximation, and Uncertainty: An Ontological Approach to Data Quality. In: Geographic Uncertainty in Environmental Security. NATO Advanced Research Workshop, Kiev, Ukraine, Springer (to appear)Google Scholar
  15. 15.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Goguen, J., Harrell, D.F.: Information Visualization and Semiotic Morphisms (2006) Retrieved 01.09.06, 2006 from
  17. 17.
    Gruber, T.R.: TagOntology - a way to agree on the semantics of tagging data (2005) (retrieved October 29, 2005),
  18. 18.
    Gruber, T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  19. 19.
    ISO: The EXPRESS language reference manual, ISO TC 184 (1992)Google Scholar
  20. 20.
    Karmiloff-Smith, A.: Reprint: Precis of: Beyond Modularity A Developmental Perspective on Cognitive Science. Behavioral and Brain Sciences 17(4), 693–745 (1994)CrossRefGoogle Scholar
  21. 21.
    Karmiloff-Smith, A.: Beyond Modularity A Developmental Perspective on Cognitive Science. MIT Press, Cambridge, MA (1995)Google Scholar
  22. 22.
    Lifschitz, V. (ed.): Formalizing Common Sense - Papers by John McCarthy. Ablex Publishing, Norwood, NJ (1990)Google Scholar
  23. 23.
    McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463–502. Edinburgh University Press, Edinburgh, UK (1969)Google Scholar
  24. 24.
    Medak, D.: Lifestyles - A Formal Model. Chorochronos Intensive Workshop 1997, Petronell-Carnuntum, Austria, Dept. of Geoinformation, Technical University Vienna (1997)Google Scholar
  25. 25.
    Medak, D.: Lifestyles - A Paradigm for the Description of Spatiotemporal Databases. Vienna, Technical University Vienna (1999)Google Scholar
  26. 26.
    Montello, D.R.: Scale and Multiple Psychologies of Space. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993)Google Scholar
  27. 27.
    Navratil, G.: Formalisierung von Gesetzen. Vienna, Technical University Vienna (2002)Google Scholar
  28. 28.
    NCGIA,: The U.S. National Center for Geographic Information and Analysis: An Overview of the Agenda for Research and Education. International Journal of Geographical Information Systems 2(3), 117–136 (1989)Google Scholar
  29. 29.
    O’Hara, K., Shadbolt, N.: Issues for an Ontology for Knowledge Valuation. In: Proceedings of the IJCAI-01 Workshop on E-Business and the Intelligent Web (2001)Google Scholar
  30. 30.
    Riedemann, C., Kuhn, W.: What are Sports Grounds? Or: Why Semantics Requires Interoperability. In: Včkovski, A., Brassel, K.E., Schek, H.-J. (eds.) Interoperating Geographic Information Systems. LNCS, vol. 1580, pp. 217–230. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Schneider, M.: Vague Spatial Data Types. In: ISSDQ ’04. Bruck a.d. Leitha, Department of Geoinformation and Cartography pp. 83–98 (2004)Google Scholar
  32. 32.
    Searle, J.R. (ed.): The Construction of Social Reality. The Free Press, New York (1995)Google Scholar
  33. 33.
    Smith, B.: Beyond Concepts: Ontology as Reality Representation. In: Proceedings of FOIS 2004. International Conference on Formal Ontology and Information Systems, pp. 73–84. IOS Press, Turin (2004)Google Scholar
  34. 34.
    Smith, B., Grenon, P.: SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial Cognition and Computing 4(1), 69–103 (2004)CrossRefGoogle Scholar
  35. 35.
    Tecknowledge: (2004) Overview of the SUMO From
  36. 36.
    Timpf, S., Frank, A.U.: Metadaten - vom Datenfriedhof zur multimedialen Datenbank. Nachrichten aus dem Karten- und Vermessungswesen Reihe I(117), 115–123 (1997)Google Scholar
  37. 37.
    Timpf, S., Raubal, M., Kuhn, W.: Experiences with Metadata. In: 7th Int. Symposium on Spatial Data Handling, SDH 1996, Delft, The Netherlands (August 12-16, 1996), IGU pp. 12B.31–12B.43 (1996)Google Scholar
  38. 38.
    Tobler, W.R.: A Computer Model Simulation of Urban Growth in the Detroit Region. Economic Geography 46(2), 234–240 (1970)CrossRefGoogle Scholar
  39. 39.
    Vckovski, A.: Interoperability and spatial information theory. In: International Conference and Workshop on Interoperating Geographic Systems, Santa Barbara, CA (1997)Google Scholar
  40. 40.
    Wand, Y., Wang, R.Y.: Anchoring Data Quality Dimensions in Ontological Foundations. Communications of the ACM 39(11), 86–95 (1996)CrossRefGoogle Scholar
  41. 41.
    Zsambok, C.E., Klein, G. (eds.): Naturalistic Decision Making (Expertise: Research and Applications Series). Lawrence Erlbaum Associates, Mahwah (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrew U. Frank
    • 1
  1. 1.Institute for Geoinformation and Cartography, Vienna University of Technology Gusshausstrasse. 27-29, A-1040 ViennaAustria

Personalised recommendations